
Kronos: The Design and Implementation

of an Event Ordering Service

Robert Escriva

Cornell University

escriva@cs.cornell.edu

Ayush Dubey

Cornell University

dubey@cs.cornell.edu

Bernard Wong

University of Waterloo

bernard@uwaterloo.ca

Emin Gün Sirer

Cornell University

egs@systems.cs.cornell.edu

Abstract

This paper proposes a new approach to determining the or-

der of interdependent operations in a distributed system. The

key idea behind our approach is to factor the task of tracking

happens-before relationships out of components that com-

prise the system, and to centralize them in a separate event

ordering service. This not only simplifies implementation of

individual components by freeing them from having to prop-

agate dependence information, but also enables dependence

relationships to be maintained across multiple independent

systems. A novel API enables the system to detect and take

advantage of concurrency whenever possible by maintain-

ing fine-grained information and binding events to a time

order as late as possible. We demonstrate the benefits of this

approach through several example applications, including a

transactional key-value store, and an online graph store. Ex-

periments show that our event ordering service scales well

and has low overhead in practice.

1. Introduction

Time and event ordering are critical to the design of dis-

tributed systems. Because this ordering determines the se-

quence of actions observed by clients, it directly impacts the

end-to-end correctness and consistency invariants a system

may maintain. Further, constraints placed on the ordering of

events can have significant impact on performance by en-

abling or limiting concurrency.

Because event ordering plays such a significant role,

many techniques have been suggested to capture dependen-

cies and ordering in distributed systems. The three most

commonly used approaches are Lamport timestamps [23],

vector clocks [17, 28], and consensus-based approaches [22,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSys 2014, April 13–16, 2014, Amsterdam, The Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2704-6/14/04. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592822

31]. While these schemes differ in how they capture de-

pendencies (whether they are expressed in a happens-before

relationship, a time vector, or an assigned timestamp in a

timeline), they share the same structure. Namely, they are

instantiated separately within each independent distributed

system and track dependencies solely within the purview

of that system, often by monitoring communication at the

boundaries of internal components. This leads to the follow-

ing problems:

• False negatives: Because a given system only knows of

relationships within its purview, it will miss any depen-

dencies that are formed over external channels [11, 23].

• False positives: Because false negatives have significant

consequences, distributed systems often err by conserva-

tively assuming a causal relationship even when a true

dependence might not exist. For instance, many vector

clock implementations will establish a happens-before

relationship between every message sent out and all mes-

sages received previously by the same process, even if

those messages did not play a causal role.

• Early assignment: Time ordering systems often impose

an order too early on concurrent events, thereby reducing

the flexibility of the system. For instance, Lamport times-

tamps and vector clocks order events at the time when

timestamps are assigned.

• Composition: Modern networked applications, including

almost all high-performance web services, are increas-

ingly built on top of multiple distributed subsystems, and

would benefit from a notion of dependence that carries

over and composes between independent subsystems.

In this paper, we propose a radically different approach

to the management of time dependencies in distributed sys-

tems. The main tenets of our approach are threefold. First,

we advocate factoring event ordering out of independent

subsystems into a shared component that tracks timing de-

pendencies between actions that traverse multiple subsys-

tems. This refactoring creates a “lingua franca” of event or-

dering which, in turn, enables multiple independent subsys-

tems to keep track of event ordering relationships without

having to agree on and pass event ordering information be-

tween other services. Second, we propose keeping track of

dependencies at very fine granularity; specifically, we make

the case for maintaining the full event dependency graph.

This yields expressive systems that can distinguish and take

advantage of concurrency where available. Finally, we ad-

vocate late time-binding, that is, picking an absolute order

of events that is congruent with constraints as late as possi-

ble. Late assignment of time order provides extensive free-

dom to applications on how to schedule a set of concurrent

events whose time order is under-constrained, a situation

commonly encountered in practice.

Based on this approach to managing the partial order of

events in a factored component, we designed and imple-

mented a fault-tolerant event ordering service called Kronos.

Kronos externalizes the task of tracking dependencies from

distributed subsystems to capture a global view of dependen-

cies between a set of distributed operations. This architec-

ture enables multiple independent subsystems to share and

maintain a unified directed acyclic graph that keeps track

of “happens-before” relationships at fine granularity. This

graph representation captures ordering relationships at much

finer granularity than both Lamport timestamps and vector

clocks. Finally and most importantly, Kronos enables appli-

cations to query the graph and determine if two events are

concurrent, which in turn identifies those instances where

the application can make its own decision on how to order

these concurrent events.

We have built several applications and examples on top of

Kronos. Our first application illustrates how Kronos can be

used to improve the user experience in a social network. The

second application is an online, strongly-consistent graph

store that uses Kronos to order writes and graph traversals.

The third application is a transactional key-value store that

uses Kronos to serialize transactions in an off-the-shelf key-

value store. Finally, we simulate the shop-floor control and

fire-alarm examples described by Cheriton and Skeen [11],

and demonstrate how Kronos overcomes the problems that

they demonstrate.

This paper makes three contributions. First, we intro-

duce a new abstraction for event ordering and propose a

new service and minimal API for distributed systems. Sec-

ond, we describe the implementation of multiple applica-

tions on top of Kronos, focusing mainly on the way in

which each application exploits the event-ordering provided

by Kronos. Finally, we evaluate the properties of a full im-

plementation of Kronos and two of our applications. Ex-

periments show that our graph store achieves throughput

that is 59× higher than achieved in an off-the-shelf graph

store and our transactional key-value store achieves 94% the

throughput of “put-and-pray” (i.e. equivalent number of non-

atomic, non-serializable operations) operations using Mon-

Kronos

A

B

C

Key-Value

Store

File

System

Graph

Store

A C

A B

B C

A: Alice updates new photos which only her friends may

access. The ACL is stored in the key-value store, and the

photos themselves are stored on the file system.

B: Alice uploads a photo to the album and tags Bob in the

photo. The photo is stored on the file system, and the graph

store records that Bob is tagged by the photo.

C: Bob likes Alice’s photographs. This action checks the

ACL, and records the “like” in the graph store.

Figure 1. A social network built using Kronos, a key-value

store, a graph store, and a file system. Each Kronos event

corresponds to an action in the application. Kronos ensures

that the transitive dependency A B C will be enforced

at the key-value store as A C, even though the key-value

store is unaware of event B.

goDB, and outperforms a lock-based transactional system by

a factor of 3.6×.

2. Design

This section describes the design and implementation of

Kronos. It defines the core abstractions on which the system

is based, describes the API and its implementation, and

outlines several deployment optimizations.

2.1 Kronos Abstractions

Kronos is a standalone shared service that tracks dependen-

cies and provides time ordering for distributed applications.

The central entity in Kronos is an event, an application-

determined set of state changes that take place atomically,

associated with a unique identifier. Events are akin to ba-

sic blocks in programming languages; they may be as fine-

grained as the execution of a single instruction or receipt

of a single message, or as coarse grained as system-wide

state changes spanning multiple hosts. In practice, applica-

tions create events that correspond to any number of actions

they take internally in response to externally-provided in-

puts. For example, a transactional key-value store could map

each transaction to a Kronos event. Kronos leaves the precise

semantics associated with events up to application and con-

cerns itself with establishing a partial order between events.

Internally, Kronos builds and maintains an event depen-

dency graph, a directed acyclic graph whose vertices cor-

respond to events and whose edges correspond to happens-

before relationships1. An edge therefore succinctly repre-

sents all the ordering related constraints between events

spanning multiple applications.

The central task of Kronos, then, is to enable applications

to quickly order events along a timeline using the event de-

pendency graph. Kronos provides interfaces by which ap-

plications may create new events, establish relationships be-

tween events, and query for pre-existing relationships. Each

of these methods translates to an operation on the graph.

When the application creates a new event, Kronos creates a

new vertex in the event dependency graph. Similarly, when

the application establishes a happens-before relationship,

Kronos constructs a directed edge between the two vertices.

To check for a pre-existing relationship between two events,

Kronos looks for a directed path between them. The direc-

tion of the path directly encodes the happens-before relation-

ship. The absence of a path between two events indicates that

they are concurrent.

To permit applications using Kronos to make decisions

that rely upon the timeline, Kronos upholds two invariants

called the coherency and monotonicity invariants. The co-

herency invariant ensures that the events can be arranged into

a possible timeline by ensuring that the graph is free of cy-

cles. The existence of a path between two events in the graph

implies that Kronos has made a series of commitments that

force one event to necessarily succeed the other, in which

case Kronos communicates this ordering to applications so

that they can act accordingly. The coherency invariant pre-

vents logical contradictions within the timeline represented

by the event dependency graph.

Kronos’s monotonicity invariant ensures that happens-

before relationships, once established, are incontrovertible.

Applications may safely commit to a particular time order

once established by Kronos, as subsequent operations can

only further constrain, but never violate, established depen-

dencies. This enables Kronos clients to be able to issue side-

effects and produce user-visible output based upon Kronos

responses. In practice, the monotonicity invariant is easily

upheld by omitting from the Kronos interface any means

by which paths may be removed from the event dependency

graph.

Using the Abstraction To see how the event dependency

graph may be used by applications, consider a social net-

work that allows users to upload, tag, and like photographs

of each other. This application stores users’ photos in a file

system, records tags and “likes” in a graph store, and main-

tains ACLs in a key-value store. When Alice uploads her

photos to the application, it stores her photos in the file sys-

tem and updates the key-value store to store the ACLs. Sim-

ilarly, when Alice uploads a photo in which she’s tagged

1 We use the terms dependency and happens-before relationship synony-

mously throughout this paper. The term causal relationship is related

but more specific and not synonymous; a happens-before relationship can

emerge without a causal relationship.

Step 1 Step 2 Step 3

A

B

C

A

B

C

A

B

C

A: Alice updates new photos to an album.

B: Alice uploads a photo to the album and tags Bob.

C: Bob likes Alice’s photographs.

Figure 2. As dependencies are added between events, edges

are added to the event dependency graph. The application

adds dependencies between A, B, and C insteps 1 and 2. Kro-

nos prohibits the application from adding the dependency

C A in step 3 because the application already established

A B C.

Bob, the application stores the photo on the file system and

records in the graph store that Bob is tagged in the photo.

Finally, Bob can like the photo, which records Bob’s actions

in the graph store only after checking that Bob is permitted

to do so by the ACLs stored in the key-value store. Since

the system is consists of three separate components, in the

absence of order, it is possible for the ACLs setup by Alice

in the first step to be improperly retrieved in the third step,

potentially exposing her photos to an unintended audience.

This example social network application can use Kronos

to ensure that this disastrous situation is reliably avoided.

Each user-facing change to the social network is represented

in Kronos as an event. Thus, when Alice initially uploads

her photos or tags Bob, or when Bob likes Alice’s photo, the

application creates an event in Kronos to represent the user’s

interaction with the service. Individual components of the

social network application will each process a different sub-

set of these events, and each can impose an order on the sub-

set they process. Kronos can then maintain an application-

wide consistent timeline that spans all events, as shown in

Figure 1. Figure 2 illustrates how the application may in-

crementally build the timeline within Kronos. After Alice’s

actions are recorded by Kronos, Kronos ensures that Bob’s

request will be correctly ordered after Alice’s actions.

2.2 Kronos API

Applications interact with Kronos through a simple API (Ta-

ble 1) designed around the event and dependency abstrac-

tions. This API enables applications to manipulate, refine,

and query the event timeline represented by the event de-

pendency graph. Kronos’s API also permits atomic batch-

ing for efficiency, and conditional operations for additional

application-level control.

Broadly speaking, the Kronos API is split into event-

oriented calls and traversal-oriented calls. The former al-

low applications to create and manage events and control

create event() Create a new event and return a unique identifier e.

acquire ref(e) Increment the reference count on e.

release ref(e) Decrement the reference count on e.

query order([(e1, e2), . . .]) Check the relationship between event pairs ei e j in specified list, returning

ei e j, e j ei, or concurrent for each.

assign order([(e1, order, e2, Create the set of relationships ei e j in specified list, if possible.

must/prefer), . . .])

Table 1. The Kronos API. Applications primarily use query order and assign order to establish dependencies.

the garbage collection mechanism, while the latter to help

discover precedence relationships between events of interest

to the application.

Event Creation Applications can add events to the Kronos

timeline with the create event call, which creates a new

vertex and returns a globally unique identifier. This identifier

may be passed to subsequent calls to query the graph or

establish happens-before relationships with the event.

Dependency Creation The fundamental purpose of Kro-

nos is to enable applications to establish a time order for

events. It does this by permitting applications to incremen-

tally refine the timeline with new pairwise dependencies be-

tween events. Kronos ensures that any refinement specified

by the application is logically coherent, and maintains the

abstraction’s invariants; it does not permit the application to

perform any refinement that violates them.

Dependencies may be created at any time during the lifes-

pan of the event dependency graph. For instance, in our so-

cial network application, each time Alice and Bob interact

with the service, Kronos assigns the interaction a unique

event identifier, and orders this event identifier with respect

to other events that the application has previously created.

These additional ordering constraints enable Kronos to clar-

ify the order of events in the timeline without withdraw-

ing from any previously upheld guarantees. Consequently,

events may be ordered by the application long after the in-

teraction that precipitated the event’s creation.

Applications may use the assign order call to establish

a dependency between a pair of events. On each call to

assign order, Kronos maintains the coherency invariant

by implicitly performing a graph traversal on the event pair.

Any operations that request an order that contradicts the

result of the traversal are aborted by Kronos and the client

is informed of the true order of operations.

To enable a wide array of application behaviors, the Kro-

nos API enables applications to express how to deal with

requests that contradict a previously established order. Kro-

nos applications may specify two kinds ordering behavior:

must and prefer. A must ordering conveys a hard con-

straint from the application that two events must be ordered

in a specific way. Applications can use must constraints to

store pre-existing relationships within Kronos, such as re-

lationships that arise from the natural execution of the sys-

3 2 . . . 0 . . . 1 . . .

i j 2 0

0 1 2 3 4 i j k

ptr = 4

Dense Array

Sparse Array

Figure 3. A diagram of the set data structure used

to track visited vertices. A vertex i is in the set if

and only if sparse[i] < ptr && dense[sparse[i]]

== i. Adding an element to the set is done with sparse[i]

= ptr; dense[ptr++] = i;. Clearing the set is done in

constant time by setting ptr = 0.

tem. For instance, when an application deletes an object, the

delete is necessarily ordered after the preceding create. If a

must request cannot be satisfied, Kronos aborts the entire

assign order request without any side effects and returns

an error to the application. In contrast, a prefer ordering

preference indicates that the application would prefer that

the events be ordered as specified in the request, but is will-

ing to accept a reversal if previously established constraints

make the request impossible. For example, applications typi-

cally prefer to respond to events in their arrival order, as long

as doing so does not violate timing constraints. The applica-

tion can use the prefer option to instruct Kronos to main-

tain the arrival order where possible and reorder them when

necessary. This permissive ordering is invaluable to appli-

cations that can reorder events, as it improves performance

while maintaining correctness.

For performance reasons, Kronos does not attempt to dis-

cover the minimal set of prefer reversals to render a sug-

gested assign order request coherent with respect to the

existing event dependency graph. Instead, Kronos applies

all must edges before prefer edges, thereby ensuring that

a prefer edge is never established ahead of a must and

thus will never cause an order assignment to abort when it

could have been satisfied. Once all must edges are satisfied,

the prefer edges are applied in the order specified by the

application. An application can have some degree of con-

trol over which prefer edges are prioritized through the or-

der in which they appear in the assign order request. Not

providing a guarantee of optimality avoids an NP-complete

problem while providing a degree of control to the program-

mer.

Kronos provides a powerful primitive reminiscent of test-

and-set atomic instructions that enables applications to spec-

ify a mix of must and prefer operations that execute as one

atomic batch. Clients may specify constraints to check with

the must flag set. Should all of the constraints be met, the

batch will be applied atomically, but if any constraint is not

met, the batch will be aborted without effect. A mixed batch

of must and prefer operations resembles conditional test-

and-set, where the must operations act as a conditional, and

the entire batch will succeed or fail atomically. These atom-

icity guarantees enable safe yet concurrent use of the Kronos

service without requiring an external lock service [9, 20].

Graph Traversal The query order call enables applica-

tions to discover happens-before relationships captured by

Kronos. This call takes a pair of events, e1 and e2, and re-

turns whether e1 e2
2, e2 e1, or they are concurrent.

To do this, Kronos performs a standard breadth-first search

(BFS) to discover paths between e1 and e2.

The Kronos implementation pays careful attention to the

cost of creating new events and happens-before relation-

ships. BFS is potentially a costly operation, whose latency

can be O(|V |) where |V | is the number of events managed by

the system. Since a naive BFS would either require Ω(|V |)
operations to initialize a visited bit field in every vertex

or else dynamically allocate memory, and since |V | can be

large, Kronos instead uses a technique that makes use of

uninitialized memory [7] to make the running time of BFS

proportional to the number of vertices traversed. To avoid

dynamic allocation, and linear initialization costs, Kronos

preallocates all memory required for graph traversal at the

time of vertex creation by creating two arrays, dense and

sparse, of size |V |. The sparse array corresponds to ver-

tices, and maintains indices into the dense array, which, in

turn, indexes back into the sparse array. Initially, ptr is set

to 0. When BFS visits a node i for the first time, Kronos

sets sparse[i] to ptr, sets dense[ptr] to i and incre-

ments ptr. Checking to see if a node i has been visited can

then be accomplished by checking if sparse[i] < ptr

and dense[sparse[i]] == i. This optimization enables

the core traversal algorithm in Kronos to require no memory

allocation and only a single cache line worth of initialization.

2.3 Garbage Collection

The event dependency graph abstraction described so far

will grow without bound as long as the distributed system is

active. Kronos employs garbage collection to enable clients

to safely shrink the event dependency graph. A critical in-

variant that Kronos maintains is that all events that could

be submitted as arguments to any of the Kronos API calls

2 e1 e2 may be read as e1 happens before e2

D

E

A

B

C

re f = 1

re f = 0

re f = 0re f = 0

re f = 1

Figure 4. Kronos uses reference counting to determine

when it is safe to collect events. Because events are collected

after their dependencies are collected, B, C, and D remain in

the graph despite their 0 reference count.

remain within the graph, since they can be used as starting

points in traversal operations. Kronos enables clients to dic-

tate exactly which events can be used as arguments by ex-

posing a reference counting API to clients.

Kronos associates a reference count with each event and

enables clients to acquire and release references through the

acquire ref and release ref calls. Each time a client

acquires a handle to an event, the reference count is incre-

mented. Clients may at any time release the handle through a

call to release ref, which decrements the reference count.

Once an event’s reference count reaches zero, the event may

be garbage collected. Overall, this reference counting mech-

anism ensures that all events that can be named by clients

have non-zero reference counts and are pinned in memory.

To preserve transitive happens-before relationships, Kro-

nos does not garbage collect events until their dependencies

are garbage collected. For example, Figure 4 shows an event

dependency graph in which multiple events remain in mem-

ory despite having zero references. Event A pins events B, C,

and D into memory, delaying their garbage collection until

after release ref is called on A.

Garbage collection is strict: each release ref call per-

forms a topological sort on the graph, removing vertices

with zero references and their outgoing edges. Thus, a single

release ref call garbage collects a subset of all vertices

with zero references. In our example above, this means that

once A’s reference count goes to 0, A, B, C, and D will be

collected immediately. The acyclic property of the graph en-

sures that the operation will complete in bounded time, and

that all vertices may be eventually collected.

The Kronos API exposes no means of removing edges

to applications because doing so would violate the mono-

tonicity invariant. Edges are removed only after their source

vertex is garbage collected. This ensures that edges persist

until they may no longer affect any traversal.

2.4 Fault Tolerance

Kronos achieves fault tolerance by replicating the event de-

pendency graph with state machine replication. Applications

may treat Kronos as a single, logically centralized service,

and, due to state machine replication, the graph will be

transparently maintained on several physical servers simul-

taneously. Because the Kronos API is entirely deterministic,

each API call directly corresponds to a state transition in the

replicated state machine.

Kronos replicates the event dependency graph using

chain replication, which guarantees linearizability [40]. The

exact number of Kronos replicas in the chain is a deployment

specific decision and should reflect the maximum number of

simultaneous faults the system is likely to experience. A

system looking to tolerate f faults deploys f +1 replicas. In

response to a replica failure, Kronos requests reconfigura-

tion of the chain via a coordination service [9, 20]. Both the

normal case and failure case performance behavior follow

from the standard chain replication protocol.

The functionality provided by chain replication is not fun-

damental to Kronos’s design and could easily be provided

by other strongly consistent replication protocols. We use

chain replication because the linear nature of the chain al-

lows transactions to be pipelined at line rate without the fan-

out/fan-in exhibited by Paxos-based techniques.

2.5 Scaling and Caching

The replicas necessary for fault tolerance provide a natu-

ral way to scale the system. Kronos can perform traversals

on potentially stale replicas for improved parallelism. Only

traversals which indicate that events are concurrent must ex-

ecute on an up-to-date copy of the graph. The monotonicity

invariant upheld by Kronos guarantees that any ordered an-

swer returned by a stale replica is indistinguishable from the

answer that would be returned had the query executed on the

latest version of the graph.

Similarly, the monotonicity invariant permits widespread

caching of traversal results without sacrificing correctness.

Kronos and applications are free to cache the results of

traversals where doing so can improve performance. For ex-

ample, Kronos can maintain an internal cache of traversal

results for high-degree vertices in order to improve traversal

efficiency. Applications can freely pass around traversal re-

sults related to events within the messages used to commit

the events.

3. Applications

In this section, we examine illustrative distributed applica-

tions to describe exactly how these systems use Kronos in

practice. To simplify exposition, we present these applica-

tions in their most simple form, omitting implementation de-

tails about caching and batching in favor of straightforward

explanations of how they interact with Kronos.

def post_message(user, message):

e = kronos.create_event()
for friend in friends_of(user):

enqueue_in_timeline_for_user(timeline=friend,
source=user,
message=message,

event=e)

def reply_to_message(user, message, in_reply_to):
e = kronos.create_event()

kronos.assign_order([(in_reply_to, ’->’, e, ’must’)])
for friend in friends_of(user):

enqueue_in_timeline_for_user(timeline=friend,

source=user,
message=message,

event=e)

def render_timeline(user):

messages is a list of (id, message) pairs
messages = get_messages_enqueued_for(timeline=user)

message_pairs is every pair of message ids selected
from the messages

message_pairs = all_pairs([m.id for m in messages])
orderings = kronos.query_order(message_pairs)
This will perform a topological sort of the messages

to ensure that sorted_messages abides by the partial
orders specified within orderings. The remaining

messages will be unaffected by the sort, enabling
them to be displayed in their arrival order
sorted_messages = topological_sort(messages, orderings)

return sorted_messages

Figure 5. Pseudocode for maintaining social network time-

lines with Kronos. Users may post messages, which appear

on timelines in the order in which the system processes them.

When users use the social network’s reply mechanism, the

network uses Kronos to order the messages. Users’ timelines

are rendered with respect to the order recorded within Kro-

nos, ensuring that conversations flow naturally.

3.1 Social Network

Social networks are often built around the notion of provid-

ing users with a timeline of activity drawn from their social

circles. A user’s timeline captures both public posts and per-

sonal interactions between users, displaying social activity

along the timeline. While much of the activity in a social net-

work is generated independently, there are certain classes of

interaction where the user expects ordering to be preserved.

For instance, communication between users should be pre-

served within the timeline—the timeline should never show

a reply earlier in the timeline than the message to which it is

replying.

Kronos provides a straightforward way to ensure that

users’ timelines reflect these communication patterns with-

out enforcing a total order on all timeline activity. The social

network may assign to each timeline post a Kronos event

identifier, and then record communication patterns in Kro-

nos with assign order. When displaying user’s timelines,

the application can issue a corresponding query order call

to detect the partial order between events. Figure 5 shows

pseudocode for this social network application.

3.2 Graph Store

Graph structured data is ubiquitous and analysis of these

large graphs has prompted the development of special-

ized storage systems that directly store and maintain these

graphs [8, 18, 27, 33, 37]. We have used Kronos to build

a horizontally scalable data store for graph-structured data

called KronoGraph. KronoGraph is built around a sharded

architecture where the graph data is partitioned across

servers. The KronoGraph API enables applications to in-

crementally build and maintain graph-structured data and

perform isolated queries on the graph.

KronoGraph permits updates and queries to the graph that

span multiple hosts; consequently, KronoGraph needs to ap-

ply operations in the same order across multiple hosts. In the

absence of ordering, graph queries that are concurrent with

updates could be applied in different orders at different hosts

simply because the underlying messages used to transmit the

operations arrive in a different order on each host. For ex-

ample, imagine a graph consisting of edge A−B, where the

application removes A−B and adds B−C as one update. An

incorrect implementation could indicate that C is reachable

from A, when, in fact, there was no instance in time when

that was true.

The intuition behind KronoGraph is that shard servers

process updates and queries in their natural arrival order, ex-

cept in cases where Kronos indicates that the natural arrival

order would not form a coherent timeline. To do this, Kro-

noGraph assigns to each update or query a unique Kronos

event identifier as it enters the system. Upon receipt of a new

update or query operation, a shard server determines which

vertices and edges are relevant to the operation, and gathers

the event identifiers for all previous operations that affected

these vertices and edges. The shard server then constructs a

batch assign order call to Kronos that prefers that each

of these previously-processed events be ordered prior to the

current operation.

Given the information available, the preferred order spec-

ified within an assign order call is the most efficient or-

dering for the events. Should this order be satisfiable, the

shard server may perform the operation immediately, with-

out reordering it with respect to previously applied opera-

tions. Sometimes, the preferred order cannot be satisfied.

For instance, if a pair of events arrive on two different

shard servers in a different order, the first shard server’s

assign order call will fix the order between these events.

The second shard server’s assign order call must nec-

essarily indicate a reversal to match the order returned in

the first call. KronoGraph shard servers can tolerate a re-

versed order that does not match their preferred ordering by

reordering operations on the graph.

For updates, shard servers maintain version information

for each vertex and edge in the graph to order the updates.

Vertices and edges contain a list of modifications and their

associated event identifiers, sorted by the relative order of

events. When Kronos upholds the ordering specified in the

assign order call, the shard server simply appends the

update to the list. Should Kronos indicate a reversal, the

shard server inserts the update into its sorted position within

the list. The coherency invariant prevents cycles in the order,

ensuring that it is always possible to insert into the list and

maintain its sorted order.

For queries, shard servers decide on their execution time

using the information returned from the Kronos assign order

call. If the assign order call succeeds with no reversals,

the KronoGraph shard server should execute the query on

the graph that contains all previous updates. When Kronos

indicates a reversal within the timeline, the shard server can

construct an older version of the graph that omits all updates

that happen after the query. Updates that are ordered strictly

later than the query can easily be masked because of the

timeline information maintained alongside the graph.

Kronos ensures that the shard servers execute queries in

matching order even as the queries traverse multiple shard

servers. Every assign order call orders a query with re-

spect to some subset of updates. Kronos ensures that all

shard servers order a given query the same way with respect

to a given update; subsequent iterations of a query refine its

place within the timeline by ordering it with respect to ad-

ditional updates. Localized queries that traverse a small por-

tion of the graph are ordered only with respect to updates

on the same portion, and will likely remain concurrent with

respect to updates occurring elsewhere in the graph.

While a straightforward implementation of KronoGraph

would query Kronos once per vertex or edge during a query,

these costs may be avoided with judicious use of batching

and caching. Upon receipt of a query operation, the Krono-

Graph shard server optimistically selects the events for ver-

tices and edges in the graph could be traversed by the query

operation, and requests that Kronos order the query con-

sistently with respect to these optimistically chosen events.

This permits KronoGraph to reduce the total number of calls

to Kronos, and enables queries to traverse larger portions of

the graph between calls.

Internally, KronoGraph relies upon caching to avoid un-

necessary calls and to limit the size of each batched call.

Each KronoGraph server independently maintains an LRU

cache of the pairwise order between events. Because of the

monotonicity invariant, KronoGraph servers may actively

pre-fill this cache with transitive relationships. For example,

if KronoGraph queries Kronos and sees that u v, and the

cache already contains v w, the KronoGraph server can

infer that u w without another call to Kronos.

3.3 Transactional Key-Value Store

Key-value stores have recently emerged as widely-used

components in distributed services, mainly due to the high

performance and scalability they offer. Existing key-value

stores, however, achieve high performance by limiting their

API; specifically, they restrict their clients to operate on a

single object at a time. We have used Kronos to build a

transactional key-value store that provides ACID transac-

tions, where each transaction may update multiple objects

atomically and with full serializability.

Transactional key-value operations are inherently diffi-

cult because transactions may span multiple hosts. Without

coordination, concurrently executing transactions would be

processed in a different order on different hosts, violating se-

rializability. One approach to adding this coordination would

be to assign a total order across all transactions, where the

total order ensures that transactions execute in the same or-

der across all hosts. While such an approach would safely

ensure serializability, it would do so at the expense of con-

currency. Transactions which operate on disjoint sets of keys

are able to execute concurrently, but the system would ex-

pend resources enforcing a total order across these keys.

The key insight in our prototype key-value store is to

create a new Kronos event for each transaction, and to order

transactions that read or write the same keys using Kronos.

This enforces a partial order across all transactions using

the event dependency graph, and ensures that transactions

are serializable, without actually serializing them. Servers

incrementally build the dependency graph by establishing

an order between transactions within their purview. Upon

receipt of a transaction, a server examines the keys within

its partition, and issues an assign order call specifying

that the transaction must be ordered after the last transaction

which read or wrote each key. Should the assign order

call fail, the transaction will abort without effect.

Globally, the event dependency graph captures and en-

forces all dependencies between transactions. The system

does not enforce any order between transactions not already

ordered by the event dependency graph, as these transac-

tions’ individual operations may be applied in any order

without violating serializability. Put another way, any topo-

logical sort of the event dependency graph will yield a sched-

ule of transactions that is equivalent to the actual execu-

tion that produced the event dependency graph. This permits

maximum flexibility between transactions, without requiring

that they be applied in a total order.

3.4 System Integration

Cheriton and Skeen, in their paper on the limitations of

causally and totally ordered communication support (CAT-

OCS) [11], provide several example applications which crit-

ically rely upon time and event ordering.

One example from CATOCS is a manufacturing envi-

ronment where machines are directed to “start” and “stop”

processing orders by multiple control units. These control

units communicate via a common database that does not pre-

serve causality across requests. Consequently, the “start” and

“stop” messages issued by control units may arrive in an un-

constrained order, allowing the machines to “start” process-

ing when they should “stop”, or vice-versa. Kronos provides

a solution to this problem, where each “start” or “stop” mes-

sage maps to a Kronos event. Control units explicitly pre-

serve order in Kronos with assign order, and clients can

verify the correct order of messages with query order.

Another CATOCS example is a fire alarm system wherein

the order in which “fire” and “fire out” messages are pro-

cessed is critical. The key problem is that a delayed “fire

out” message could lead an extinguisher to believe that mul-

tiple fires were extinguished, leaving fires to burn indefi-

nitely. Again, Kronos provides a natural solution wherein

each “fire” and “fire out” message is recorded as a Kronos

event. The system records in Kronos a happens-before re-

lationship between each pair of “fire” and “fire out” events.

The resulting event dependency graph will consist of iso-

lated pairs of vertices connected by single edges. It enables

all entities to determine which fires are still burning no mat-

ter the order in which messages are delivered.

It is common for manufacturing environments to enhance

fire alarm systems with a kill-switch that safely shuts down

machinery during emergencies. One approach to this would

be to modify all components involved, and tightly couple

them together. Another approach, facilitated by Kronos, is

to introduce a fail-safe component that couples the control

units with the fire alarm via the event dependency graph.

The fail safe responds to “fire” messages by issuing “stop”

requests, and using Kronos to order the “stop” message after

the “fire” message. On receipt of the corresponding “fire

out” message, the fail safe orders the “stop” before the “fire

out”, and orders the subsequent “start” message after the

“fire out”. Thus the fail-safe automatically stops and restarts

processing machines in response to fires without changes to

either the fire alarm or manufacturing environment.

4. Evaluation

We have fully implemented Kronos to provide the function-

ality detailed in Section 2, and have built multiple applica-

tions on top of it. In the first half of our evaluation, we ex-

amine the performance of our sample applications to demon-

strate that it is feasible to build real-world applications using

Kronos. In the second half of our evaluation, we use mi-

crobenchmarks to investigate important aspects of Kronos’s

design, paying careful attention to performance, scalability,

and resource usage. We finish our evaluation with a brief

demonstration of Kronos’s fault-tolerance.

Our experimental setup consists of fourteen well-provis-

ioned servers. Each server is equipped with two Intel Xeon

2.5 GHz E5420 quad-core processors and 16 GB of RAM.

All servers are running 64-bit Debian 7 and are connected

via gigabit Ethernet.

4.1 Applications

In this section we attempt to answer the question, “Is it prac-

tical to build applications on Kronos?” The performance of

the resulting applications is important in evaluating whether

Kronos is a suitable choice for each application, but should

not be the only deciding factor. For small- to medium-sized

0

1

2

3

Titan KronoGraph

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

o
p
er

at
io

n
s/

s) Dense
Sparse
Twitter

Figure 6. Titan and KronoGraph performing friend rec-

ommendation calculations on a mutating graph in a 95%

read/5% write workload. KronoGraph outperforms Titan by

a factor of 59× for the Twitter social network. Kronos en-

ables KronoGraph to perform queries that are fully isolated

from the ongoing write operations, while Titan uses locking

to make the same guarantee.

applications, the composition property provided by Kronos

may be worth any overhead that affects performance.

For all of the application-specific benchmarks, we de-

ployed a single instance of Kronos on its own server, to en-

sure that the cost of interacting with Kronos includes all rele-

vant communication cost. The remaining servers in the clus-

ter deploy the application itself. We evaluate fault tolerance

overheads separately.

4.1.1 Graph Store

We first evaluate KronoGraph, our graph store built on top

of Kronos. For an accurate comparison, we compare Krono-

Graph to Titan [37], another online graph store that permits

users to query and incrementally alter the graph. Titan em-

ploys lock-based techniques to provide isolation guarantees

comparable to KronoGraph. We omit comparisons to other

notable graph systems [18, 27, 33] because they do not sup-

port online operation and are thus incomparable to Titan and

KronoGraph.

Intuitively, queries and updates in KronoGraph should be

strictly less expensive than in Titan because Titan’s lock-

based techniques inhibit concurrency, while KronoGraph ex-

ploits late time binding in Kronos to allow non-blocking be-

havior. Titan’s locks decide the order of graph operations;

the first process to grab a lock is implicitly ordered earlier

than later lock-holders. KronoGraph explicitly manages the

order of graph operations, and consequently can perform

multiple operations simultaneously, and resolve their order

in one call to Kronos.

To characterize the difference in behavior between Titan

and KronoGraph, we implemented a friend recommendation

application in a social network on top of both systems. Our

0

1

2

3

4

5

MongoDB Locking Kronos

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

tr
an

sa
ct

io
n
s/

s)

Figure 7. Transactional chains are fully three times faster

than locking-based implementations and achieve 94% of

the throughput of a “put-and-pray” approach built on Mon-

goDB. This graph shows a sample banking application per-

forming transfers between accounts.

application represents the social network as a graph where

individuals are represented by vertices, and edges symbolize

friendship. The application makes friend recommendations

on the basis of maximizing mutual friendship. For a given

input, the algorithm will return the user with the most num-

ber of friends in common. This mimics the behavior of many

social networks, where the structure of the graph is used to

make further recommendations to users [39].

We ran both of our friend recommendation algorithms on

a subset of the Twitter social network [29]. This graph con-

sists of 81,306 individuals with 1,768,149 friendship links.

For both implementations, we ran 32 parallel clients with

a workload generator that produced a mixed workload that

performed a friend recommendation 95% of the time, and

introduced new individuals or friendships to the graph the

remaining 5% of the time. We can see in Figure 6 that the

KronoGraph friend recommendation algorithm outperforms

the Titan recommendation algorithm by a factor of 59×.

The performance gap between KronoGraph and Titan is

largely related to the density of the graph. We generated two

random graphs of varying density to use as inputs to our

friend recommendation algorithm to confirm this hypothesis.

The denser of the two graphs had an average degree of 100,

while the sparser graph had an average degree of 10. We

can see in Figure 6 that KronoGraph outperforms Titan by a

factor of 8.3× and 1.4× respectively.

The variation in KronoGraph’s performance across the

three different graphs gives us deeper insight into the perfor-

mance characteristics of the system beyond raw differences

in throughput. Because the number of calls made to Kronos

is related to the number of operations submitted by Kronos

clients, we would expect that a bottleneck around Kronos

would limit the throughput and restrict it from varying with

the density of the graph. Batching and caching in Krono-

0

1

2

3

4

5

6

2 4 6 8 10 12

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

(m
il

li
o
n

o
p
s/

s)

Servers

Figure 8. Kronos is a scalable system. This graphs shows

the aggregate throughput achieved by a fixed number of

clients calling query order on a graph where each edge

participates in, on average, 5 happens-before relationships.

Aggregate throughput is measured across a 30 s window

and the tight error bars show the 5th and 95th percentiles for

throughput observed throughout the window.

Graph are effective, and prevent Kronos from becoming a

bottleneck. In our Twitter experiment, approximately 13.4%

of operations required a Kronos traversal.

4.1.2 Transactions

We want to evaluate a transactional key-value store that

provides ACID semantics built using Kronos. To evaluate

this application, we developed a prototypical banking ap-

plication, similar to the one used in nearly every database

textbook to illustrate transactions [13]. Our application pro-

cesses users’ debits and credits, and transfers money be-

tween bank accounts.

For comparison, we implemented the banking applica-

tion on top of two other data stores for a total of three

comparable bank applications. Our first bank application is

built on the popular MongoDB NoSQL data store, where ac-

count transfer consists of two independent write operations

to MongoDB. Because MongoDB does not offer transac-

tional semantics—it is only eventually consistent—this ap-

plication is likely to encounter undesirable behavior, such

as incomplete money transfers and lost deposits. Our second

bank application uses locking techniques, such as those used

in Percolator [32], to synchronize access to individual ac-

counts and provide fully-serializable semantics. Finally, we

implemented transactional semantics using Kronos as de-

scribed in Section 3.3. We used HyperDex [15] as the un-

derlying key-value store in the second and third implemen-

tations.

Figure 7 shows the throughput each implementation was

able to achieve when accessed by 64 concurrent clients.

We see that the Kronos-based variant outperforms the lock-

based variant by a factor of 3.6×. The Kronos-based trans-

0

10

20

30

40

50

60

70

80

90

100

10 100

O
v
er

h
ea

d
C

D
F

(%
)

Latency (us)

Figure 9. Kronos quickly creates events. Kronos can create

a new event in less than 57 µs 99% of the time.

actional key-value store achieves 94% the throughput of the

non-transactional, eventually-consistent MongoDB deploy-

ment. This comparison provides an advantage to MongoDB,

as MongoDB provides relatively weak guarantees, while the

Kronos-based transactional key-value store provides ACID

transactions.

4.2 Micro-Benchmarks

In order to further explore the design decisions made in Kro-

nos, we present several microbenchmarks each of which ex-

plores a different aspect of Kronos’s design. Kronos pro-

vides tools for explicit event creation and ordering. We first

examine the performance and scalability of order-related

API calls as they are by far the most costly aspect of Kro-

nos. We then investigate the time and resource costs asso-

ciated with event creation, dependency creation, and event

garbage collection. Except where noted, these results do not

include the overhead of state machine replication, as it is

largely separable from Kronos’s implementation.

Scalability Our first experiment measures how additional

servers enable Kronos to handle additional query order re-

quests. In this experiment, we pre-loaded Kronos with a ran-

dom graph over 10,000 vertices with 50,000 edges, and var-

ied the number of replicas used for satisfying query order

requests. Each client performs random query order re-

quests on the graph, checking for preexisting relationships.

We deployed 64 clients that concurrently query the replicas

of the graph using the query order API. Figure 8 shows

that Kronos scales well; each additional server enables the

system to respond to proportionally more query server re-

quests.

Dependency Creation When assigning order between

two events, the dominating cost is graph traversal. Once

Kronos traverses the graph, the cost of actually recording

the dependency is nearly trivial. We measured the time taken

to create dependencies that require no traversal, and found

that, across 1 million events, dependency creation completes

0

2

4

6

8

10

12

14

0 25 50 75 100

M
em

o
ry

C
o
n
su

m
p
ti

o
n

(G
B

)

Events (million)

Figure 10. Kronos’s memory consumption scales linearly

as events are added. In this graph, a single client adds a total

of 100 million events sequentially, maintaining a reference

to each one. The memory usage is the maximum resident set

size of the process. Discontinuities in the graph are directly

related to array-doubling in the implementation.

in 49 µs 14.7% of the time, and 50 µs the remaining 85.3%

of the time. These numbers also reflect the additional cost of

creating events above and beyond the cost of a query order

operation.

Event Creation The next experiment examines the over-

head of event creation and shows that Kronos creates events

in constant time. Figure 9 shows a CDF of event creation la-

tency for 100 million events. Kronos completes a majority of

event create operations in 44 µs and 99% of operations in

less than 57 µs. These measurements include all allocation

necessary to create the new event. For this experiment, the

client uses the Kronos Python bindings to create and acquire

references to the events. The event creation latency was mea-

sured by timing 10,000 sequential calls to event create,

with no parallelism in the calls. To avoid confounding effects

relating to network latency and to isolate the performance of

the server itself, the client and server are co-located on the

same machine.

Memory Consumption Because Kronos allocates all mem-

ory used by a vertex at event creation time, it is important to

quantify this cost. Figure 10 shows that 100 million events

occupy 12 GB of RAM and fit within main memory of a

single server. The reported memory consumption includes

all memory necessary to track unique event identifiers, per-

form traversal using the BFS algorithm and maintain one

reference per event. Applications will only allocate more

memory when adding edges, where each edge occupies 8 B

of space. The implementation dynamically allocates mem-

ory to grow and shrink while remaining proportional to the

number of events and dependencies in the system.

Garbage Collection Kronos’s strict garbage collection

scheme introduces minimal overhead. Because Kronos uses

0

5

10

15

20

25

30

0 65536 131072 196608 262144

G
ar

b
ag

e
C

o
ll

ec
ti

o
n

T
im

e
(m

s)

Collected Events

Figure 11. Garbage collection is efficient even for the abso-

lute worst case event dependency graph. In this experiment,

fixed length paths are created in the dependency graph such

that releasing a reference to the first event in the path garbage

collects the entire path.

1e3

1e4

1e5

1e6

5e2 5e3 5e4 5e5 5e6

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Expected number of edges

Figure 12. Kronos is fast for sparse graphs. This graph

shows the aggregate throughput of query order operations

on Erdös-Rényi graphs with 10,000 vertices and varying

numbers of edges.

strict garbage collection, the cost of releasing the final ref-

erence to a single event is proportional to the total number

of events collected. Figure 11 shows worst case garbage col-

lection behavior of Kronos. For this experiment we control

the number of events to be garbage collected by a single

release ref call. As expected, the time taken to perform

strict garbage collection grows linearly in the number of

events to be collected.

Impact of Graph Structure The cost of graph traversal

is dependent upon the structure of the graph itself. Intu-

itively, sparse graphs are quicker to traverse as the likelihood

of touching many vertices becomes lower as the graph be-

comes sparser. On the other hand, processing dense graphs

will necessarily involve a longer traversal as more vertices

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

o
p
s/

s)

Time

Figure 13. Kronos automatically recovers from failures.

This graph shows the effects of server failure in a 3-server

Kronos deployment. At the 30 s mark, the middle server in

the chain is killed. Another server is brought into the cluster

to take its place at the 60 s mark.

belong to large connected components. To test the behav-

ior of Kronos on a variety of sparse and dense graphs, we

generated random event dependency graphs conforming to

the Erdös-Rényi Model [14]. Under this model, any two

points in the graph are connected with probability p. Ac-

cordingly, these graphs have between 500 (p = 0.00001) and

5,000,000 (p = 0.1) vertices, with larger values of p corre-

sponding to denser graphs. Figure 12 demonstrates the im-

pact of graph density on the throughput of query order op-

erations on a single instance of Kronos. For relatively sparse

graphs where each vertex belongs to, on average, less than 3

happens-before relationships, Kronos can perform hundreds

of thousands of queries per second. As the density of the

graph increases, Kronos’s throughput approaches a stable

point where additional edges do not alter throughput. The

majority of applications will likely resemble sparse depen-

dency graphs as most applications do not need to impose a

total order across all events, but instead order small groups

of events together.

4.3 Fault Tolerance

Kronos uses chain replication to provide fault tolerance. As

a test of its fault tolerance capabilities, we examined the per-

formance of a 2-fault tolerant Kronos cluster. The underly-

ing chain replication algorithm automatically removes failed

servers from the cluster and can integrate new servers trans-

parently. Figure 13 shows the throughput of the 2-fault tol-

erant cluster as a server fails and is re-added to the system.

At the 30 s mark, the middle server in the chain is killed.

The system recovers quickly and stays available for further

operation. At the 60 s mark, a new server is introduced at

the tail of the chain and begins the healing process to restore

the service to being 2-fault tolerant. Overall, Kronos remains

available and provides high throughput when servers are re-

moved or re-added. This graph includes all the overhead of

our unoptimized state machine replication implementation.

5. Related Work

Previous sections introduced Kronos, an efficient event-

ordering service. To our knowledge, Kronos is the first sys-

tem to abstract event-ordering into a generic, reusable ser-

vice for building applications. While prior work often ad-

dresses event-ordering at the storage or communication lev-

els, Kronos provides a more general abstraction that enables

these applications and more.

Broadly speaking, prior work may be divided into the

following categories.

Causality Capturing Techniques: Determining the or-

dering of events is a classic distributed systems problem with

many well-known solutions. The problem was originally

articulated as the motivation for Lamport timestamps [23]

which captures happens-before relationships and provides

a total ordering across events. However, Lamport times-

tamps can create spurious relationships that do not affect

the correctness of the application. This problem cannot be

addressed by increasing the granularity at which Lamport

timestamps are maintained, because any partial order of

Lamport timestamps is still too coarse-grained and cannot

capture all relationships between events.

Vector clocks [17, 28] permit finer-grained partial orders

than Lamport timestamps by establishing a partial order

across events. Vector clocks use a vector of logical clocks

to capture happens-before relationships. They enable more

parallelism in the partial order than Lamport timestamps, but

consume more space to achieve this. In the worst case, vector

clocks require as many entries as parallel processes in the

system [10] and exhibit significant overhead in deployments

where there is a high-rate of server or process churn. The

trade-off inherent to vector clocks is that the incidence of

false relationships is inversely proportional to the granularity

at which the vector clock is maintained.

There has been much work on improving vector clocks.

Clock Trees [2] provide support for nested fork-join paral-

lelism, Plausible Clocks [38] offer constant size timestamps

while retaining accuracy close to vector clocks. Hierarchi-

cal Vector Clocks [21] provide more compact timestamps

that adapt to the structure of the underlying network. While

these techniques improve the trade-off between granularity

and performance, they still restrict the kinds of dependencies

an application may specify, and are not fully general.

Kronos takes an entirely different approach as compared

to timestamp-based systems in how it captures causality.

It maintains an explicit event dependency graph to track

causality relationships and offers fine grain control to the ap-

plication. By externalizing event/dependency handling and

management and providing a unified API, Kronos simplifies

event-ordering management for applications and enables de-

pendencies to span application boundaries.

Consensus Protocols: Consensus protocols enable appli-

cations to construct a total order across all events. Exam-

ples of consensus protocols include Paxos [22], a crash-

fault tolerant consensus protocol; Viewstamped replica-

tion [31] which operates in a primary-backup fashion;

Tango [4], which replicates in-memory data structures using

a shared, totally-ordered log; and multi-phase commit proto-

cols [24, 34], a class of protocols that ensure all participants

in a distributed transaction agree on whether to commit or

abort by special-casing consensus [19].

Kronos permits applications to maintain a partial order

across events in the system, increasing the flexibility with

which events may be ordered. Of course, applications may

always institute a total order across all events using Kronos.

Chain Replication: Kronos uses chain replication [40] to

replicate its data. Kronos’s reads from stale replicas resem-

ble the apportioned queries in CRAQ [35]. Unlike CRAQ,

the implementation used in Kronos does not require query-

ing the chain tail to validate reads; the monotonicity invari-

ant ensures that if a query returns a result, the result is as

valid as if it were generated by the tail itself.

Embedded Causal Consistency: Many systems inter-

nally manage event ordering and track inter-process com-

munication to provide causal consistency. Representative

storage system examples include Bayou [36], a replica man-

agement system that exchanges logs between servers, allows

for connection disruptions without preventing progress, and

manages conflict resolution of causally conflicting opera-

tions through a set of user specified merge procedures. De-

pot [26] and SPORC [16] are cloud storage systems which

employ variants of Fork-Join-Causal or Fork* consistency

to enable practical cloud applications which can operate on

untrusted cloud servers. Causal multicast [5, 6] protocols

respect causal order when delivering messages to applica-

tions. Causality is also useful for supporting speculative ex-

ecution [30], and bug and fault detection [1]. Externalizing

event ordering to Kronos enables causal consistency guaran-

tees that span multiple applications.

Application-Level Dependencies: Many systems rely on

application-specific mechanisms to resolve and order events.

Dynamo [12] is an eventually consistent key-value store

that improves availability by using vector clocks to resolve

concurrent writes. COPS [25] provides low-latency geo-

replication using causal consistency and uses an application-

specific conflict resolution mechanism to merge conflict-

ing writes. Others have advocated for explicit causality by

suggesting that applications explicitly select the subset of

happens-before relationships that the data store should pre-

serve to uphold application-level invariants [3].

These approaches are complementary to Kronos because

Kronos provides a general method for event ordering in

the form of a service. Applications may use Kronos within

the application-defined handlers of causally-consistent data

stores. Further, applications may explicitly, and directly, de-

clare happens-before relationships in Kronos. Unlike other

forms of application-level dependency management, Kronos

permits the development of reusable components that natu-

rally compose to achieve application-specific guarantees.

6. Conclusion

This paper proposed a new abstraction for tracking and man-

aging dependencies between events in a distributed system.

This abstraction opens the door for a new class of services in

distributed systems, namely, event ordering services, which

enable applications to explicitly manage and refine the possi-

ble timeline of events within the system. These new services

provide a lingua franca for timeline management, enabling

multiple independently developed components to form one

integrated system that uses a common interface for time and

event ordering. This approach facilitates the implementation

of high-performance distributed systems that can provide

strong guarantees by identifying potential cases of concur-

rency wherever possible. End-to-end performance bench-

marks on Kronos-aware applications, such as a strongly

consistent graph store and a fully-serializable transactional

key-value store, demonstrate these performance gains. The

graph store achieves up to 59× higher throughput than com-

mercially available systems, and the key-value store can

achieve 94% the throughput of non-transactional implemen-

tations. Example applications show that using the Kronos

approach to build distributed systems can simultaneously

offer high performance, enable reusable components, and

uphold strong guarantees in the end application.

Acknowledgments

We’d like to thank our shepherd, Rodrigo Rodrigues, and our

anonymous reviewers for their helpful feedback. This mate-

rial is based upon work supported by National Science Foun-

dation under Grant No. CNS-1111698, by Intel under Grant

No. 10176559, the VMWare Graduate Fellowship program,

and the National Science and Engineering Research Council

of Canada.

References

[1] M. Attariyan and J. Flinn. Using Causality To Diagnose

Configuration Bugs. In Proc. of USENIX, Boston, MA, June

2008.

[2] K. Audenaert. Clock Trees: Logical Clocks For Programs

With Nested Parallelism. In IEEE Transactions on Software

Engineering, 23(10), 1997.

[3] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Sto-

ica. The Potential Dangers Of Causal Consistency And An

Explicit Solution. In Proc. of SoCC, San Jose, CA, Oct. 2012.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-

hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.

Tango: Distributed Data Structures Over A Shared Log. In

Proc. of SOSP, Farmington, PA, Nov. 2013.

[5] K. P. Birman, A. Schiper, and P. Stephenson. Fast Causal

Multicast. Cornell University, Technical Report TR90-1105,

1990.

[6] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight

Causal And Atomic Group Multicast. In ACM ToCS, 9(3),

1991.

[7] P. Briggs and L. Torczon. An Efficient Representation For

Sparse Sets. In ACM LoPLaS, 2(1-4), 1993.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,

H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M.

Marchukov, D. Petrov, L. Puzar, Y. J. Song, and V. Venkatara-

mani. TAO: Facebooks Distributed Data Store For The Social

Graph. In Proc. of USENIX, San Jose, CA, June 2013.

[9] M. Burrows. The Chubby Lock Service For Loosely-Coupled

Distributed Systems. In Proc. of OSDI, Seattle, WA, Nov.

2006.

[10] B. Charron-Bost. Concerning The Size Of Logical Clocks

In Distributed Systems. In Information Processing Letters,

39(1), 1991.

[11] D. R. Cheriton and D. Skeen. Understanding The Limitations

Of Causally And Totally Ordered Communication. In Proc. of

SOSP, Asheville, NC, Oct. 1993.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s Highly Available Key-Value

Store. In Proc. of SOSP, Stevenson, WA, Oct. 2007.

[13] R. A. Elmasri and S. Navathe. Fundamentals Of Database

Systems. Addison-Wesley, US, 2010.

[14] P. Erdös and A. Rényi. On The Evolution Of Random Graphs.

In Mathematical Institute of the Hungarian Academy of Sci-

ences, 5(17–61), 1960.

[15] R. Escriva, B. Wong, and E. G. Sirer. HyperDex: A Dis-

tributed, Searchable Key-Value Store. In Proc. of SIGCOMM,

Helsinki, Finland, Aug. 2012.

[16] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Fel-

ten. SPORC: Group Collaboration Using Untrusted Cloud Re-

sources. In Proc. of OSDI, Vancouver, Canada, Oct. 2010.

[17] C. J. Fidge. Logical Time In Distributed Computing Systems.

In IEEE Computer, 24(8), 1991.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-Parallel Computation on Nat-

ural Graphs. In Proc. of OSDI, Los Angeles, CA, Oct. 2012.

[19] J. Gray and L. Lamport. Consensus On Transaction Com-

mit. Microsoft Research, Technical Report MSR-TR-2003-

96, 2004.

[20] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:

Wait-Free Coordination For Internet-Scale Systems. In Proc.

of USENIX, Boston, MA, June 2010.

[21] D. A. Khotimsky. Hierarchical Vector Clock: Scalable Plau-

sible Clock For Detecting Causality In Large Distributed Sys-

tems. In Proc. of ICATM, Colmar, France, 1999.

[22] L. Lamport. The Part-Time Parliament. In ACM ToCS, 16(2),

1998.

[23] L. Lamport. Time, Clocks, And The Ordering Of Events In A

Distributed System. In CACM, 21(7), 1978.

[24] B. Lampson and H. E. Sturgis. Crash Recovery In A Dis-

tributed Storage System. Xerox Parc, Palo Alto, CA, Techni-

cal Report, 1976.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

Don’t Settle For Eventual: Scalable Causal Consistency For

Wide-Area Storage With COPS. In Proc. of SOSP, Cascais,

Portugal, Oct. 2011.

[26] P. Mahajan, S. T. V. Setty, S. Lee, A. Clement, L. Alvisi, M.

Dahlin, and M. Walfish. Depot: Cloud Storage With Minimal

Trust. In Proc. of OSDI, Vancouver, Canada, Oct. 2010.

[27] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System

For Large-Scale Graph Processing. In Proc. of SIGMOD,

Indianapolis, IN, June 2010.

[28] F. Mattern. Virtual Time And Global States Of Distributed

Systems. In Proc. of PDA Workshop, Chateau de Bonas,

France, Oct. 1989.

[29] J. J. McAuley and J. Leskovec. Learning To Discover Social

Circles In Ego Networks. In Proc. of NIPS, Lake Tahoe, CA,

Dec. 2012.

[30] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.

Rethink The Sync. In Proc. of OSDI, Seattle, WA, Nov. 2006.

[31] B. M. Oki and B. Liskov. Viewstamped Replication: A Gen-

eral Primary Copy. In Proc. of PODC, Toronto, Canada, Aug.

1988.

[32] D. Peng and F. Dabek. Large-Scale Incremental Processing

Using Distributed Transactions And Notifications. In Proc. of

OSDI, Vancouver, Canada, Oct. 2010.

[33] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-

Centric Graph Processing Using Streaming Partitions. In

Proc. of SOSP, Farmington, PA, Nov. 2013.

[34] D. Skeen and M. Stonebraker. A Formal Model Of Crash

Recovery In A Distributed System. In IEEE Transactions on

Software Engineering, 9(3), 1983.

[35] J. Terrace and M. J. Freedman. Object Storage On CRAQ:

High-Throughput Chain Replication For Read-Mostly Work-

loads. In Proc. of USENIX, San Diego, CA, June 2009.

[36] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spre-

itzer, and C. Hauser. Managing Update Conflicts In Bayou,

A Weakly Connected Replicated Storage System. In Proc. of

SOSP, Copper Mountain, CO, Dec. 1995.

[37] Titan Distributed Graph Database. http://

thinkaurelius.github.io/titan/.

[38] F. J. Torres-Rojas and M. Ahamad. Plausible Clocks: Constant

Size Logical Clocks For Distributed Systems. In Distributed

Computing, 12(4), 1999.

[39] J. Ugander and L. Backstrom. Balanced Label Propagation

For Partitioning Massive Graphs. In Proc. of WSDM, Rome,

Italy, Feb. 2013.

[40] R. van Renesse and F. B. Schneider. Chain Replication For

Supporting High Throughput And Availability. In Proc. of

OSDI, San Francisco, CA, Dec. 2004.

