
Setsum: A Checksum for Set Membership

Robert Escriva

Seeking Employment

Abstract

This paper introduces the concept of a setsum for set mem-

bership. A setsum is a checksum that operates on sets of byte

strings with the property that when two sets contain the same

strings, they have the same setsum regardless of the order in

which strings are considered. This paper walks through the

setsum construction and gives an end-to-end example of a

database protected by setsums.

1 Introduction

Checksums are probably the most ubiquitous method of data

integrity assurance. From network packets to database pages,

checksums generally take in a byte stream of data and pro-

duce a fixed-size output with the crucial property that when

the byte stream changes, the checksum changes with high

probability. Some checksums are cryptographic in nature be-

cause they make it a near-certainty that small changes in the

input—or any changes in the input—lead to big changes in

the output with low risk of collision.

It is common to build tooling on top of the raw checksums

that verifies the checksummed data. For example, it is com-

mon to publish cryptographic checksums of software distri-

butions alongside the distributions themselves. Any user can

verify that the checksum holds by computing the checksum

and comparing it to the published values. Another example

would be Percona toolkit’s table checksum (pt-tc) tool. The

pt-tc tool passes hashes of data through the replication stream

allowing the main replica to dictate what the data should be

and the replicas to compare the data to the replicated check-

sum. Fundamentally, both tools established an agreed-upon

convention that both the party creating the checksum and the

party verifying the checksum, checksum the data in a partic-

ular order. Specifying the same bytes in a different order, or

specifying a different set of bytes changes the checksum.

This paper introduces the idea of a setsum, which is a fun-

damentally new type checksum that operates on a set of byte

streams. The setsum provides operators for computing set

union and set difference, which allows for efficient addition

and removal of items from a setsum to correspond to changes

in a set’s membership. The core idea at play is to maintain

membership of the setsum in parallel to maintenance of some

other set of data. When an item is added to the set, it gets

added to the setsum. The setsum for the union of two sets

is the union of their setsums. At all times the setsum corre-

sponds to the current membership of the set, matching the

value that would be computed if the items were to be hashed

from scratch. Consequently, it is possible to use setsum to

compare the maintained hash against the data to verify that

the data matches what’s expected.

For a concrete example, we could construct a database that

maintains for each transaction the setsum corresponding to

the database when the transaction committed. The set union

operator used to merge in the transaction’s delta takes O(1)
time, so each transaction can efficiently compute its local

checksum and then compute the overall database’s checksum

with a single merge. The database could then verify that back-

ups match their respective checksums as a way of verifying

backup integrity without doing more than iterating over the

backup to compute a setsum.

The core contributions of this paper are:

• We provide a specification of the setsum and contrast it

to existing checksum APIs.

• We evaluate a Rust implementation of the setsum and

discuss performance considerations.

• We describe three example use cases within a database

and show how a setsum can be extended to cover all

aspects of database integrity.

The rest of this paper is as follows. Section 2 gives an

overview of the math behind our implementation and goes

over some related work. Section 3 goes over the design and

implementation considerations. Section 4 describes how to

use setsum to provide end-to-end data integrity protection

for a database. Section 5 evaluates our implementation, and

Section 6 concludes.

1

2 Background

Conceptually, a setsum builds on checksums. Where check-

sums operate on byte streams, setsums operate on sets of byte

streams. To relate the two: In a checksum, there is just one

element that gets hashed while a setsum hashes the members

of a set in a way that preserves set structure. Setsums support

set union and set difference so that two setsums representing

two sets can be union’d or diff’d in setsum-space with O(1)
operations. Figure 1 gives a concise illustration of the differ-

ence between a checksum and a setsum in pseudo-Rust.

The way any setsum works starts with a mapping from the

input space into setsum space. This mapping gives the set-

sum for the one-element set associated with each input. Set-

sum places no requirements on this mapping, beyond asking

that it provide a strong enough hash to make the risk of colli-

sion negligible. A hash like SHA-256 would work well.

Once an element is hashed to its one-element setsum, an

associative and commutative merge function we’ll call · di-

rectly provides the associative and commutative properties

of the setsum. The choice of · affects the setsum greatly, but

without knowing its definition we can say that if · provides

set-union, then · of the inverse will provide set-difference.

A setsum, then, is defined by the hash function of its in-

puts that relate byte streams to element’s hashes, the merge

operator · that computes set union over the elements, and an

inverse function that is defined for all elements.

One straw-man way to achieve this would be to use a

checksum like SHA-256 to get 256-bit checksums that XOR

together. The inverse function for XOR just so happens to be

the identity function so we have a trivial setsum with XOR.

For example, let’s consider the set of elements A,B,C.

Let’s say these elements hash to the values h(A) = 0b1101,

h(B) = 0b0110 and h(C) = 0b1100. The setsum of these

three elements is 0b0111, the XOR across all the values.

Adding an element a second time is the same as removing it.

We can subtract B from the set by adding inverse(B), which

is the same as adding B again to get 0b0001.

The optical illusion that makes addition look like deletion

is a massive problem here: One of the problems checksums

detect is corrupt data and when duplicate data looks like miss-

ing data—as it must with XOR—we cannot reliably deter-

mine what went wrong. Ideally we would have to add an

element many times over before it begins to act as its own

inverse. We can think of this as saying something about the

strength of the setsum. Our goal, then, is to develop the nec-

essary tools to make a strong setsum.

The necessary observation to make here is that even

though there are 2256 different hashes, it only takes a cycle

of length two to encounter a problem because that is the peri-

odicity of an individual bit. A 256-bit number is 256 groups

of size two. The periodicity is two because all the groups cy-

cle together regardless of initial configuration. In general it

is the least-common multiple of the groups’ periodicities.

fn checksum(bytes: String)

-> ChecksumDigest;

fn setsum(set_of_bytes: Iterator<Item=String>])

-> SetsumDigest;

fn union(lhs: SetsumDigest, rhs: SetsumDigest)

-> SetsumDigest;

fn diff(lhs: SetsumDigest, rhs: SetsumDigest)

-> SetsumDigest;

Figure 1: A checksum takes a string and returns a digest. A

setsum takes an iterator over strings and returns a digest. The

iterator is free to return strings in any order; for a given set

of strings the setsum is order-invariant.

We can make the periodicity large by making a single,

large group. Our next straw-man way to do this would be to

use large numbers—on the order of as many bits as there are

in the hash of an element—and do modular arithmetic over

these large numbers. This requires integer division over num-

bers with many hundreds of bits. It’s infeasible fast, even for

small objects, but it would give us the strongest of checksums

if we chose our modulus right.

For our straw men, the fast group is not strong and the

strong group is not fast. What we want is some group over

which we can perform operations with a constant-time, fast

merge operator that’s free from weakness. The two weak-

nesses in the checksum are the mapping from elements to

their one-element-set setsums and the merge operator. We

correct the first weakness by using a cryptographic check-

sum to generate the bytes used as a one-element-set setsum.

We correct the second weakness by using some group theory.

We need the · operator to be associative and commutative;

that is, we need an Abelian group [6]. This means that for any

two elements ei, e j, the result of ei ·e j will be in the group too,

and we can compute a set in any arbitrary order so long as we

eventually add all elements.

The critical property we ask of our Abelian group is that

there should be no subgroups that capture the elements in a

cycle. For example, when working with numbers mod 12, the

values 4 and 8 capture the value. There’s no way to transition

to something other than a 0, 4, or 8 once you land on either.

Similarly 3, 6, and 9 capture the value. And once on zero

there’s no transitioning away from zero.

To ensure there are no bad subgroups, it is sufficient to

ensure that for every element, every other element is exactly

one value’s merge away. This stems from the definition of a

sub group in which the · of any two sub group elements will

also be in the sub group. If it is possible to reach all possi-

ble values the bad subgroup will not exist. Constructively for

an element ei to reach e j it suffices to take e−1
i ·e j to transi-

tion from ei to e j because ei ·e−1
i must necessarily give the

identity element, and cannot change e j. Thus we can guar-

antee there will be no bad subgroups by ensuring that every

element has an inverse.

2

3 Design and Implementation

The design and implementation of setsum centers around the

Abelian group used for merge operations and the inverse op-

erator used for difference operations. In this section we pick

a group that is as strong as those discussed in the previous

sections and is possible to implement efficiently.

3.1 Picking a Group

Our implementation leverages an insight we can make about

XOR to provide a strong setsum. A 256-bit number can be

cast as 256 Abelian groups consisting of the numbers mod

2. Our previous insight was that the least-common multiple

of the groups’ sizes will determine the strength of the setsum.

What if we instead of 256, 1-bit groups we used fewer, bigger

groups? And, rather than mod 2, let’s have the modulus of

each group be different and co-prime to every other modulus

so that the least-common multiple is ∏i pi for the broader

setsum. The resulting group would be uniquely defined by

the number and value of primes, pi, specified.

It seems natural, then, to move from 1-bit modular arith-

metic to some other number of bits. There’s a tension here:

Too big, like the largest of 64-bit numbers, and it becomes

hard to do modular arithmetic without first overflowing the

type—something that would lead to incorrect values. Too

small and there’s too many modular arithmetic computations.

Our approach is to do 32-bit arithmetic with 64-bit num-

bers. In this way values can temporarily overflow 32-bits

and addition modulo a prime number is sufficiently efficient.

To make the groups’ sizes co-prime, we do arithmetic mod-

ulo the largest 32-bit primes. It’s easy to see why this group

works and modular arithmetic is well supported out of the

box in every language. Figure 2 shows the exact arithmetic.

Formally this construction provides an Abelian group over

the elements 0 to ∏i pi where pi is the i’th largest 32-bit

prime. We can see that the, “No bad subgroups,” assumption

holds because we can construct an inverse element for every

valid setsum using subtraction from the provided primes, and

thus we can construct the transformation that takes ei to e j by

e−1
i ·e j for all ei, e j.

3.2 Syntactic Sugar

In our implementation we augment the code from Figure 2

with syntactic sugar that allows for more normalized usage

of the library. First, we create an accumulating Setsum type.

Then, we implement insert and remove operators on the type

to allow single element insertion and deletion. Addition and

subtraction operators allow for efficient merge and different

operations. There are no batched APIs because they are akin

to a parallel computations brought together via a merge and

should be implemented as such. Figure 3 shows prototypes

of the syntactic sugar.

pub const SETSUM_COLUMNS: usize = 8; (1)

type Setsum = [u32; SETSUM_COLUMNS];

const PRIMES: Setsum = [(2)

4294967291, 4294967279,

4294967231, 4294967197,

4294967189, 4294967161,

4294967143, 4294967111,

];

fn merge(lhs, rhs) -> Setsum

{

let mut ret = Setsum::default();

for i in 0..SETSUM_COLUMNS {

let lc = lhs[i] as u64; (3)

let rc = rhs[i] as u64;

let sum = (lc + rc)

% PRIMES[i] as u64;

ret[i] = sum as u32;

}

ret

}

fn inverse(state) -> Setsum {

for i in 0..SETSUM_COLUMNS {

state[i] = PRIMES[i] - state[i]; (4)

}

state

}

Figure 2: The core constants and algorithm. (1) The groups

consist of eight 32-bit numbers, for approximately 2256

strength. (2) The primes chosen are part of the specification.

(3) Math is performed in 64-bit space to avoid 32-bit over-

flows when adding two numbers. (4) Inverse is the value that

will take us to zero. It’s subtraction with no need for division.

pub struct Setsum {

state: [u32; SETSUM_COLUMNS],

}

impl Setsum {

fn insert(&mut self, item: &[u8]);

fn insert_vectored(&mut self, item: &[&[u8]]);

fn remove(&mut self, item: &[u8]);

fn remove_vectored(&mut self, item: &[&[u8]]);

}

impl std::ops::Add<Setsum> for Setsum {

type Output = Setsum;

fn add(self, rhs: Setsum) -> Setsum;

}

impl std::ops::Sub<Setsum> for Setsum {

type Output = Setsum;

fn sub(self, rhs: Setsum) -> Setsum;

}

Figure 3: Syntactic sugar. Insert and remove update the in-

ternal digest to reflect the added value. The vectored variants

allow for inserting elements like key-value pairs without hav-

ing to perform concatenation prior to the insertion in much

the same way as vectored I/O.

3

4 An End-to-End Example

This section walks through an end-to-end application of set-

sum to a proposed replicated database backed by a log-

structured merge-tree [7]. We will generate a setsum in

the replication stream and logically cover maintenance as-

pects of the database with the provided setsum. In this way,

the replication stream always dictates the contents of the

database. Once by replicating the data and once by specify-

ing the data’s checksum.

First, we’ll look at the replication log itself. This is the

point at which data gets ingested into the system. We will

maintain a checksum over the replication stream so that the

state of the database for each transaction is known. Each

transaction builds on the immediately previous transaction’s

state to provide its own setsum digest. The setsum at all

times represents the data added and removed by the replica-

tion stream.

We’ll then extend the checksum to cover a log-structured

merge-tree and show how to preserve the database’s check-

sum while compacting away data to reclaim space. In this

manner the setsum acts like double-entry accounting to make

sure that the only data that disappears is data to be intention-

ally thrown away. The data must be thrown away the same in

both the output file and the setsum.

Finally, we’ll look at how to keep a checksum over the

backups so that backups can be incrementally verified reg-

ularly without performing a full restore.

4.1 Replication Log

Database systems like MySQL [3] replicate a log that dic-

tates the changes to the database. There are two primary

methods by which replication happens. In the first mode

of operation, queries themselves are transmitted through the

replication stream and execute downstream on replicas. This

mode of operation assumes the data should be the same so

the query will execute deterministically and lead to the same

outcome on secondary replicas as was achieved on the main

replica. The second method is to execute the query on the

main replica, watching what data it touches so that it can

replicate the pre- and post-images of the transaction. These

are the locks held, and rows removed and added. Propagating

the query is convenient because a compact query can have

large impact on the database. Propagating the pre- and post-

images guarantees the replica will execute the transaction the

same as the primary replica.

We can augment either replication method with setsums

over the data to keep an up-to-date checksum over the

database. The database can, at any time, take a snapshot of

the data and compare it to the setsum observed at the time of

the snapshot. For systems without a snapshot primitive, the

snapshot can be achieved by taking nodes out of the replica-

tion stream to hash data at rest. It is common in database op-

acc = Setsum::default();

for row in rows_removed() {

acc.remove(row);

}

for row in rows_added() {

acc.insert(row);

}

acc + previous_transaction_setsum

Figure 4: The code run for each transaction in the replication

stream. The result of acc.digest() represents at all times

the set of item held by the database. Note that while we ini-

tialize acc to the previous transaction’s value, it would be

just as natural and acceptable to initialize it to zero and then

use merge to merge it with the previous transaction’s value.

erations to take nodes out of the replication stream for such

actions. An alternative would be to restore from backup and

compare against the setsum of the latest transaction included

in the backup.

Figure 4 shows an example of how to maintain a rolling

checksum over the replication log with only local computa-

tion. Items get removed from the set when removed by the

replication stream, and added to the set when added to the

replication stream. The accumulator will capture the state of

the database so that a fresh scan of the database would yield

the same value.

Propagating a setsum alongside a transaction provides a

stronger form of replicated transaction than queries or pre-

/post-images by themselves. The replica can compute a set-

sum of its behavior and verify that the construction of the

setsum is the same as was used to create the setsum. In this

way a setsum can be used to detect if a replica diverges when

replicating database queries. The same protection extends to

replicating the pre- and post-images, but with considerably

less sparkle as the transaction’s side effects are defined by

the pre- and post-images.

4.2 Log-Structured Merge Tree Compaction

Log-structured merge trees [7] are a data structure that writes

data to the root of a tree and moves it upwards through the

tree via a process known as compaction. In log structured

merge trees like LevelDB [2] or RocksDB [4], the tree it-

self comprises files on disk in sorted runs, and compaction

merges from one sorted run into the next higher sorted run by

writing new files and erasing old files. Each time compaction

runs, it runs the risk of dropping too much data.

The primary reason for compaction in an LSM-tree is to re-

claim space from deleted and overwritten data. Because data

is always ingested at the root, deletes happen as a write of a

tombstone that masks the value to readers and new values are

written in parallel to old values. When multiple versions of

a key exist—whether by tombstone or multiple writes to the

same key—readers pay a performance penalty. Compaction

4

inputs = Setsum::default();

compact = Setsum::default();

dropped = Setsum::default();

outputs = Setsum::default();

for file in provided_inputs() {

inputs.insert(file.setsum());

}

for kv_pair in input {

compact.insert(kv_pair);

if !compacted_away(kv_pair) {

write_to_output(kv_pair);

} else {

dropped.insert(kv_pair);

}

}

for file in written_outputs() {

outputs.insert(file.setsum());

}

assert_eq!(inputs, compact);

assert_eq!(inputs, merge(outputs, dropped));

Figure 5: The code for checking that compaction does not

drop data extraneously. Note that while its shown as a sin-

gle process here, it could be the case that multiple processes,

representing multiple releases of software can verify the com-

paction by operating on setsums.

removes tombstones and the data they mask to reclaim space

and re-organize the tree. A bug in compaction that spuriously

drops data would be disastrous as it is hard to detect such data

loss as a user of the system.

We can augment compaction with a setsum that tracks

what data gets eliminated. A verification process, colloqui-

ally called a verifier can check that what it expects com-

paction to drop is all that gets dropped, and it can do this

solely via inspection of the inputs to compaction and the set-

sums generated during compaction. This allows two distinct

processes to communicate about what they observe in the

compaction. One process can perform the compaction, while

another, perhaps from an older and more well-tested release,

verifies the compaction.

In this way, we can have multiple versions of software

cross-check each other and communicate solely via the

checksums of the data they see. A verifier can then check

that checksums of like data match. Only when the verifier

succeeds will the two processes apply the compaction and

make its state become canonical.

Figure 5 demonstrates the compaction algorithm. We work

with four checksums to compute the input. The first check-

sum is over the inputs. It can be computed by looking at

the setsum embedded within each file’s metadata. The sec-

ond checksum is over the read data. This checksum should

match the input checksum because it reads the same data.

The third checksum is over data that gets dropped. When data

isn’t written to the output it gets “written” to the dropped set-

sum. The fourth checksum is the union of the output’s meta-

data setsums. The four checksums capture all aspects of com-

paction.

The equation for balancing compaction’s setsums is:

cinput = ccompact = merge(cout puts,cdropped)

We can see that the way these setsums interrelate allows

for accounting of what was dropped. Two processes can

communicate the setsums for their outputs and dropped val-

ues and be confident that when the setsums match, the com-

paction was performed the same in both processes.

4.3 Backup Verification

Setsums present a unique way to verify backups for sys-

tems like LevelDB and RocksDB. Both systems create im-

mutable files, called sorted-string-tables (or SSTs), on disk

that change rarely and only with compaction. Because these

files are immutable, it suffices to store alongside each file

its setsum. The setsums of files included in the manifest can

be used to check the manifest’s overall setsum, and then be

used to check each individual file on disk produces the same

checksum. Thus, a backup can be verified without restoring

completely from backup and taking a fresh hash; instead, the

process verifying the backup can get away with resources

comparable to a single SST.

Verifying a LevelDB or RocksDB backup, then, becomes

a game of capturing the setsums securely for later reference,

ensuring that their union matches the replication stream.

When streaming the backup, each SST is compared to its set-

sum and the total is maintained for comparison to the man-

ifest. If a file diverges, it will be detected by the individual

file setsums and the reason for the checksum failure can be

investigated.

5 Evaluation

Setsum is provided in Rust via the setsum crate, version

0.3.0. In all benchmarks using the sugared API, we link the

crate directly. In microbenchmarks justifying implementa-

tion choices, code was selected from the crate for presenta-

tion alongside the alternative choices.

All benchmarks are run on a Lenovo Thinkpad X280 with

Core i7-8550U CPU, 8 GB of RAM, and Samsung SSD 980

PRO 2TB hard drive running Ubuntu 22.04. The A/C adapter

was connected and power governor set to performance mode

for all trials.

5.1 Random

All random strings used in testing were generated using

the guacamole and armnod crates. Guacamole generates a

linearly-seekable stream of 270 bytes. This differs from a ran-

dom number generator because movement from i to i+ x in

5

Test Name /dev/urandom Guacamole

sts_serial 4 PASSED WEAK

sts_serial 9 PASSED WEAK

sts_serial 13 WEAK PASSED

rgb_bitdist 4 WEAK PASSED

rgb_permutations 2 WEAK PASSED

rgb_lagged_sum 24 WEAK PASSED

rgb_lagged_sum 25 PASSED WEAK

∗ PASSED PASSED

Figure 6: DieHarder results for /dev/urandom and Gua-

camole. All tests pass with weak results or better. Any test

not listed passed for both /dev/urandom and Guacamole.

armnod --number 1000 --chooser-mode set-once

armnod --number 1000

--chooser-mode set-zipf --zipf-theta 0.999

Figure 7: Generate 1000 strings and then select from them

according to a zipf distribution.

the input seeks proportionately far in the output stream. Con-

sequently, the seed is predictable. Moving from seed i to seed

i+ 1 moves exactly 64 B in the output stream. This allows

us to take indices into the randomness that are equidistant

from each other—a property that follows directly from tak-

ing equidistant inputs to the guacamole.

The guacamole algorithm was formed by taking the Salsa

ciper [5] and optimizing for a constant key and plaintext. The

algorithm was unrolled by hand to propagate the changes

through. Consequently, guacamole functions like a faster,

less strong salsa as far as speed and entry go. Comparisons to

the Linux kernel using the dieharder [1] tool show that gua-

camole is comparable in strength to /dev/urandom. Figure 6

shows the results of tests that passed with weak results.

The armnod crate provides tools for generating UTF-8

strings from guacamole. It provides command-line tools for

generating a fixed set of strings from guacamole. Figure 7

shows two example command lines for armnod. The first gen-

erates strings from a fixed set, returning each string exactly

once. The second command draws from the set of strings ac-

cording to a Zipf distribution with a theta of 0.999.

5.2 Hash Function Selection

The strength of the setsum comes in-part from the strength

of the checksum that maps elements to their one-element-

setsum. We will choose by assumption a cryptographic-

strength hash as the hash for the setsum. The API permits

alternate implementations of sugar using the same 256-bit

group operators by exposing the group operators directly. In

this section we will compare two options of 256-bit check-

1MB/s

10MB/s

100MB/s

1GB/s

4 16 64 256 1024 4096 65536

T
h
ro

u
g
h
p
u
t

(b
y
te

s/
se

co
n
d
)

Object Size

SHA2
SHA3

Figure 8: Throughput for hashing one megabyte of data con-

sisting of elements varying in size between 8 and 65536

bytes. Maximum throughput of SHA2 is 219.1 MB/s and

maximum of SHA3 is 271.8 MB/s.

sums and evaluate their fitness to power setsum.

For this experiment, we used guacamole to generate 1 MB

of data consisting of strings of different lengths. The overall

data remained the same size to ensure that all data fits in the

CPU cache, so that we report the efficiency of the operations,

not effects of the memory hierarchy. For each set of param-

eters, we measure the latency taken to hash the 1 MB and

report the reciprocal as throughput measured in megabytes

per second. For 64 B strings and longer the SHA3 algorithm

performs better by approximately 24%. All results report the

mean across 1000 trials and were measured to have a stan-

dard deviation tight enough to appear as zero on the graph.

The SHA2 algorithm was chosen by the setsum crate

prior to these results. A future version will consider adopt-

ing SHA3.

5.3 Group Operator

The group operator we chose to implement in Figure 2 can be

improved upon. We start with the observation that the group

operator uses division to implement modular arithmetic. Be-

cause it is division modulo prime numbers there are not com-

piler nor hardware tricks that can be used to turn the division

into something other than division. The compiler and hard-

ware aren’t privy to an insight that we can make using modu-

lar arithmetic. Any valid setsum digest has 8 32-bit integers,

each of which is less than a specified prime. When adding

two setsums together it is easy to see that s1 + s2 < 2p be-

cause s1 < p and s2 < p. We will never create a setsum that’s

more than 2p. Consequently we can do a conditional subtrac-

tion to turn a value in the range [p,2p) into one that’s [0, p).
To decide the implementation of the group operator, we

compared the difference between using modular arithmetic

and a conditional subtraction of p. For this experiment, we

generated 1,000,000 setsums using guacamole and timed

6

0/s

50M/s

100M/s

150M/s

200M/s

250M/s

div sub

Figure 9: Throughput of the Abelian group operator in oper-

ations per second. When using division the group operator

is able to sustain 163 million operations per second. Chang-

ing to a conditional subtraction is able to sustain 227 million

operations per second.

how long it took to take the union across all setsums. We

ran the benchmark as a warm-up for five seconds and then

collected the next 1000 measurements. Figure 9 reports the

mean throughput of both methods. We can see that the con-

ditional subtraction approach achieves a throughput that is

39% higher than the approach based upon division.

5.4 Inverse

The inverse operator is the final part of our setsum. This oper-

ator is well defined for all values and is required to remove an

element from the setsum. Figure 10 shows the performance

of the inverse operator in operations per second. This value

was measured by constructing one million random setsums

using guacamole, then measuring the time taken to take the

inverse of all one million. The reported value is converted to

operations per second.

5.5 Database

As part of our evaluation, we wrote a sorted-string-table li-

brary in Rust so that we could test the ingest and verify paths

of the replicated database design. This library supports the in-

gestion and verify paths for SSTs and is available as the sst

crate. To test our design, we generated four different data sets

of data with object size ranging from 72 B to 16 kB. Each

data set is a 1 GB data set that is pre-generated in advance

using guacamole. The first data set has 8 B keys and 64 B

values. The other sets range in size up to 16 kB.

Figure 11 shows the throughput of ingest for all four work-

loads. The reported throughput is the average throughput for

ingesting the pre-generated 1 GB of data as a series of new

sorted string tables. We can see that the throughput scales

0/s

200M/s

400M/s

600M/s

800M/s

1G/s

inverse

Figure 10: The group inverse operator’s speed in operations

per second. This is the computation necessary to remove the

inverse of a set from a setsum. The setsum can perform 615

million setsum inverse operations per second.

0B/s

50MB/s

100MB/s

150MB/s

200MB/s

8:64 16:128 16:1024 16:16384

Figure 11: Throughput for four different key-value store

workloads that ingest data into a key-value store.

7

0B/s

50MB/s

100MB/s

150MB/s

200MB/s

250MB/s

8:64 16:128 16:1024 16:16384

Figure 12: Throughput for four different key-value store

workloads that verify the data in a key-value store.

with size of the data and ranges from 45 MB/s for the small

objects to 133 MB/s for the large objects.

6 Conclusion

This paper introduced the concept of a setsum over an un-

ordered set of byte strings. This is a new class of check-

sum, the likes of which is not present within the literature.

To demonstrate the value of setsum, we walked through an

example database that extends setsum coverage from where

data is ingested all the way to the backups.

We hypothesize that other structures like setsum exist,

with the defining characteristic being the relationship be-

tween a checksum and the data checksummed: As compu-

tation moves in the data space, so too does parallel computa-

tion in the checksum space. We are actively exploring ways

to use cryptography to power more verifiers in the future.

Availability

Setsum is available in Rust via the setsum crate. The

sorted string table library is available via the sst crate. The

guacamole and armnod crates are likewise available. All

code is Apache 2.0 licensed for free distribution.

References

[1] dieharder. https://webhome.phy.duke.edu/~rgb/

General/dieharder.php.

[2] LevelDB. https://github.com/google/leveldb.

[3] MySQL. https://www.mysql.com.

[4] RocksDB. https://rocksdb.org.

[5] The salsa20 core. https://cr.yp.to/salsa20.html.

[6] Lara Alcock. How to think about Abstract Algebra. Ox-

ford University Press, New York, 2021.

[7] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and

Elizabeth J. O’Neil. The log-structured merge-tree (lsm-

tree). Acta Informatica, 33(4):351–385, 1996.

8

https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://github.com/google/leveldb
https://www.mysql.com
https://rocksdb.org
https://cr.yp.to/salsa20.html

	Introduction
	Background
	Design and Implementation
	Picking a Group
	Syntactic Sugar

	An End-to-End Example
	Replication Log
	Log-Structured Merge Tree Compaction
	Backup Verification

	Evaluation
	Random
	Hash Function Selection
	Group Operator
	Inverse
	Database

	Conclusion

