
Warp: Lightweight Multi-Key Transactions for Key-Value Stores

Robert Escriva†, Bernard Wong‡, Emin Gün Sirer†

† Computer Science Department, Cornell University
‡ Cheriton School of Computer Science, University of Waterloo

Abstract

Traditional NoSQL systems scale by sharding data

across multiple servers and by performing each opera-

tion on a small number of servers. Because transactions

necessarily require coordination across multiple servers,

NoSQL systems often explicitly avoid making transac-

tional guarantees in order to avoid such coordination.

Past work in this space has relied either on heavyweight

protocols, such as two-phase commit or Paxos, or clock

synchronization to perform this coordination.

This paper presents a novel protocol for providing

ACID transactions on top of a sharded data store. Called

linear transactions, this protocol allows transactions to

execute in natural arrival order unless doing so would vi-

olate serializability. We have fully implemented linear

transactions in a commercially available data store. Ex-

periments show that Warp achieves 3.2× higher through-

put than Sinfonia’s mini-transactions on the standard

TPC-C benchmark with no aborts. Further, the system

achieves 96% the throughput of HyperDex even though

HyperDex makes no transactional guarantees.

1 Introduction

NoSQL systems have become the de facto back-end for

modern Big Data applications because they allow un-

precedented performance at large scale. The defining

characteristic of these systems is their distributed archi-

tecture, where the system shards data across multiple

servers to improve scalability. To further improve scal-

ability, these systems typically avoid cross-server com-

munication which makes it difficult to implement ACID

transactions.

Distributed transactions demand coordination among

multiple servers. In traditional RDBMSs, transaction

managers coordinate clients with servers, and ensure that

all participants in multi-phase commit protocols run in

lock-step. Such transaction managers constitute bottle-

necks, and modern NoSQL systems have eschewed them

for more distributed implementations. Scatter [19] and

Google’s Megastore [5] shard the data across different

Paxos groups based on their key, thereby gaining scala-

bility, but incur higher coordination costs for actions that

span multiple groups. An alternative approach, pursued

in Calvin [43], is to serialize all operations using a con-

sensus protocol and use deterministic execution to im-

prove performance. Google’s Spanner [12] relies on the

TrueTime API to assign timestamps to transactions with-

out cross-server synchronization. Compared to tradi-

tional NoSQL systems with simple and scalable designs,

these systems introduce spurious coordination between

transactions. Spurious coordination is when a transac-

tion processing protocol unnecessarily delays or reorders

transactions’ execution in order to enforce an order be-

tween transactions that could be applied in natural arrival

order. Coarse-grained consensus groups and centralized

sequencers both exhibit varying degrees of spurious co-

ordination.

This paper introduces Warp, a NoSQL system that

provides support for efficient, one-copy serializable

ACID transactions with no spurious coordination. Warp

uses a novel server-side commit protocol called linear

transactions which executes transactions in natural ar-

rival order directly on the servers which hold relevant

data, unless doing so would violate serializability. The

linear transactions protocol uses a novel dependency

tracking technique to enable servers to locally decide

when a transaction may commit. Servers are free to com-

mit transactions in their natural arrival order, except in

instances where an arriving transaction contains depen-

dencies on other, outstanding transactions.

Three techniques, working in concert, enable lin-

ear transactions to simultaneously achieve scalability

and performance, without additional transaction man-

agers or clock synchrony assumptions. First, linear-

transactions improve scalability by arranging servers into

per-transaction dynamically-determined chains, where

each chain contains, solely, those servers which store

data affected by the transaction. Similar to how tradi-

1

tional NoSQL systems store and retrieve a single ob-

ject using just O(1) servers, Warp processes a transaction

over k objects using the minimal set of O(k) servers

Second, linear transactions eliminate spurious co-

ordination by ordering only those transactions which

have data items in common and their transitively-ordered

transactions. Approaches to transaction management

which compute a total order on all transactions neces-

sarily require costly global coordination. Such a total or-

der leads to spurious coordination, and thus, inefficiency,

which some systems reduce by partitioning the consen-

sus groups into smaller units [5, 19]. Linear transactions

avoid these overheads by avoiding a total order; the rela-

tive order between any two transactions is only explicitly

decided when the two transactions’ have data items in

common.

Finally, linear transactions improve performance by

allowing multiple writes to the same object proceed in

parallel. Locking-based isolation approaches would nec-

essarily serialize transactions as writers wait to obtain

contended locks. Traditional optimistic two-phase com-

mit protocols will abort transactions that try to concur-

rently prepare, leading to high abort rates when writing

popular objects. Linear transactions allow the writes to

proceed in parallel without serializing the execution or

introducing spurious aborts.

Intuitively, a system which guarantees serializabil-

ity requires some form of consensus or additional syn-

chronicity assumptions to provide such guarantees, and

Warp is no exception. Our approach relies on a repli-

cated state machine called the coordinator to establish the

membership of the servers in the cluster, as well as the

mapping of key ranges to servers. A crucial distinction

from past work that perform consensus agreement on the

data path, however, is that linear transactions involve its

consensus component only in response to failures.

Overall, this paper makes three contributions. First,

we outline a novel protocol for providing efficient, one-

copy serializable transactions on a distributed, sharded

data store. The protocol eliminates spurious coordina-

tion, tolerates a user-specified threshold of faults, guar-

antees atomicity and provides isolation. Second, we

describe our implementation of the commercially avail-

able Warp key-value store, including the design of the

client. The system has been fully implemented, sup-

ports C/C++, Python, Java, Ruby, and Node.JS bindings.

Third, we show through macro- and microbenchmarks

that Warp achieves throughput that Warp achieves 3.2×
higher throughput than mini-transactions on the standard

TPC-C benchmark with no aborts, and has low overhead;

the system achieves 96% the throughput of HyperDex,

upon which Warp builds, even though HyperDex pro-

vides no transactional guarantees.

The rest of this paper is organized as follows. Sec-

s2

s1

s0
s8

s7

s6

s5
s4

s3

Client Library

Transaction Context
Coordinator

Partition

s0 A-C

s1 D-F

s2 G-I

s3 J-L

s4 M-O

s5 P-R

s6 S-U

s7 V-X

s8 Y-Z

Figure 1: Warp’s architecture consists of storage servers, the

coordinator, and the client library. The coordinator maintains

the partitioning of the key space across servers, and supplies

this mapping to the client library. The client library uses this

mapping to directly contact storage servers.

tion 2 describes linear transactions protocol for NoSQL

systems. Section 3 describes our full implementation of

Warp. Section 4 evaluates the performance of Warp. Sec-

tion 5 surveys existing systems and provides context and

Section 6 concludes.

2 Design

Warp builds upon the HyperDex [17] key-value store,

and is comprised of three components: storage servers,

clients, and the coordinator. Each storage server main-

tains a subset of keys in the system; collectively, the stor-

age servers hold all data stored by the system. Clients is-

sue requests to the storage servers, both to store new ob-

jects, and to retrieve previously stored objects. The coor-

dinator maintains meta-state for the system, specifically

the partitioning of the key space across storage servers.

Figure 1 illustrates Warp’s overall architecture.

The Warp client library provides isolation by allow-

ing its users to optimistically perform read and write op-

erations that only affect local state, and verifying that

isolation is not violated at commit time. To perform a

read, the library retrieves the requested data from the

storage servers and caches the object within the trans-

action context. Subsequent reads within the transaction

will be satisfied by this cache, if possible. Write oper-

ations executed within the transaction are not visible on

the servers immediately. To perform a write, the library

2

saves the write to the context without contacting any stor-

age server. Multiple writes to the same key will overwrite

the locally maintained object. Transactions are unaware

of any modifications written within a transaction until the

client commits the transaction. At commit time, the li-

brary submits the set of all objects read and all objects

written to the storage servers as a linear transaction.

2.0.1 Chain Construction

Clients use the transaction context to construct chains

of servers that process transactions operations in a pre-

dictable order. The client library sorts the keys read or

written by a transaction in lexicographical order, and

maps the sorted list onto a set of servers. The lexi-

cographical sort ensures that transactions with multiple

keys in common pass through their shared set of servers

in the same order.

Figure 2 shows how transactions that read and write

the same keys have overlapping chains. Transaction T1

reads key kH and writes key kA, while transaction T2

reads keys kP and kT . Transaction T3 writes keys kA, kH ,

kP, and kT . The object-to-server mapping dictates that

T1’s chain pass through servers s0 and s2 because these

servers hold kA and kH respectively. Similarly, T2 forms a

chain through s5 and s6. T3 writes the same keys touched

by T1 and T2 and has a chain that passes through all four

servers. The library submits the linear transaction to the

first server in the chain, which then forwards the transac-

tion to subsequent servers in the chain.

2.1 Commit Protocol

The linear transactions commit protocol ensures that all

transactions either commit in a serializable fashion, or

abort with no effect. It consists of one forward and one

backward pass through each linear transaction’s chain,

where the storage servers directly propagate the linear

transaction. The forward pass validates the values opti-

mistically read by the client, and ensures that they remain

unchanged by other transactions. Both the forward and

backward passes propagate dependency information to

enforce a serializable order across all transactions. The

backward pass propagates the result of the transaction –

whether it committed or aborted – and commits the data

for committed transactions to disk. An efficient back-

ground garbage collection process limits the number of

embedded dependencies by removing dependencies for

transactions that have completed both passes.

2.1.1 Validation

The forward pass validates transactions by ensuring that

newly arriving transactions do not invalidate previously

validated transactions. Servers check each transaction to

ensure that it does not read values written by, or write

values read by, previously validated transactions. Servers

also check each value against the latest stored in its local

s2

G-I

s1

D-F

s0

A-Cs8

Y-Z

s7

V-X

s6

S-U

s5

P-R s4

M-O

s3

J-L

T1

T2
T3

Figure 2: Clients deterministically construct dynamic chains

based upon the keys read and written by transactions. In this

example, a client submits T1, T2, and T3. Transactions T1 and

T2 operate on disjoint keys, {kA,kH} and {kP,kT } respectively.

T3 touches all four keys and forms a chain that includes the

chains of T1 and T2

.

key-value store to ensure that the value was not changed

by a committed transaction. Transactions which fail ei-

ther of these checks fail the validation step.

Servers abort a transaction that fails validation by

sending an abort message backwards through the chain

members that previously validated the transaction. These

members remove the transaction from their local state,

enabling other transactions to validate in its place.

Servers validate each transaction exactly once, on its

forward pass through the chain; any transaction that com-

pletes its forward pass may commit at all servers. Conse-

quently, the last server in a chain may commit the trans-

action immediately, and begin sending a commit mes-

sage backwards through the chain.

2.1.2 Dependency Management

Providing a serializable order across all transactions re-

quires that the transaction commit order does not create

any dependency cycles. The protocol does this by main-

taining a dependency graph across transactions, where

the vertices are transactions and each directed edge spec-

ifies a conflicting pair of transactions. A conflicting pair

is a pair of transactions where one transaction writes at

least one key read or written by the other. In the de-

pendency graph, the direction of an edge indicates the

order in which the transactions in the conflicting pair

must commit. For example, a graph with conflicting pair

(TX ,TY) and dependency TX TY tells the protocol to

commit TX before TY at every server.

3

s2

s1

s0
s8

s7

s6

s5
s4

s3

(a) Concrete Deployment

T1 T2

T3

T4

(b) Dependency Graph

T1

T2

T3

T4

s0 s1 s2 s3 s4 s5

Forward Pass

Backward Pass

(c) Propagation Graph

Figure 3: Transactions are ordered by servers where they overlap.

Intuitively, the density of the dependency graph di-

rectly impacts the ways in which servers may reorder

transactions. For instance, if the dependency graph has

a path between every pair of vertices, then every trans-

action commits in exactly one order with respect to ev-

ery other transaction. Committing transactions in an or-

der that contravenes the graph breaks serializability. On

the other hand, a dependency graph that consists solely

of vertices with no edges permits maximum flexibility

and allows transactions to commit in any order. Enforc-

ing any commit order with such a graph would introduce

spurious coordination, and reduce opportunities for opti-

mization.

The linear transactions protocol incrementally builds

dependency graphs by embedding dependency informa-

tion into transactions’ commit messages. Embedded

within the forward and commit messages for each trans-

action is the complete list of dependencies that must

commit before the transaction. This list corresponds to

every vertex in the dependency graph that contains a path

to the given transaction. For example, a transaction TX

that includes TY and TZ as part of its dependency list im-

plies that the DAG has paths TY , ...,TX , and TZ , ...,TX . To

improve efficiency, the protocol only maintains a list of

dependencies, and does not need to track the structure of

the graph beyond this list.

At a high level, the protocol follows two rules to en-

sure that servers capture all dependencies between trans-

actions, and commit transactions in the order specified

by their dependencies. First, whenever one transaction

commits after another at a server, the server extends the

dependency list of the first transaction to include the sec-

ond transaction and the transactions in the second trans-

action’s dependency list. Second, a transaction may only

commit after all its dependencies commit; it will be de-

layed at the server until this rule is met.

Figure 3 shows three different ways of visualizing

conflicting pairs. In Figure 3a, we see four transactions’

chains starting at the client and passing through differ-

ent servers. Because these transactions overlap at sev-

eral servers, they form multiple conflicting pairs, shown

as the undirected graph in Figure 3b. The protocol will

determine the order between these transactions to deter-

mine the directionality of the edges. Figure 3c shows the

same graph, separated on a per-transaction basis. Each

edge in Figure 3b corresponds to one or more servers in

Figure 3c where the transactions overlap. Each horizon-

tal line in Figure 3c represents a transaction’s chain and

indicates which servers will execute the transaction.

2.1.3 Forward Pass

The forward pass establishes state to detect conflicting

pairs, and embeds dependencies on completed transac-

tions. Servers efficiently identify all conflicting pairs by

maintaining local state on a per-key basis. For each key, a

server maintains a list of every currently-executing trans-

action that includes the key and the set of dependencies

specified by previously committed transactions that in-

cluded the key. Each transaction is added to this local

state on the forward pass so that other transactions may

identify it as a conflicting pair on their backward pass.

To capture dependencies on completed transactions,

servers augment each transaction’s dependency list with

the dependencies stored in the per-key state. This ensures

that when one transaction completes its backward pass

before another completes its forward pass, the former

will be a dependency of the latter. The natural ordering

of the system determined the order, and the dependencies

merely capture the relationship for other servers.

2.1.4 Backward Pass

The backward pass propagates the commit message to

the servers in the chain in reverse order, and, during the

4

reverse traversal, determines if the transaction conflicts

with any other transactions. For a conflicting pair of

transactions, the protocol selects the last server in com-

mon between the transactions’ chains, called the decider,

to decide the commit order. Because this server is the

first server encountered on both transactions’ backward

passes, it can decide an order and pass the requisite de-

pendencies to every subsequent server in both chains.

Figure 3 depicts the deciders for multiple transactions.

Take, for example, transactions T1 and T2 whose chains

both pass through s1, s2, and s3. The decider for this pair

of transactions is server s3 because it is the last server in

common to the chains. It decides an order between T1

and T2, say T1 commits before T2, and embeds this de-

pendency into the second transaction, i.e. T2. The com-

mit message for T2 passed to server s2 contains the infor-

mation T1 T2 as well as any dependencies transitively

obtained from T1.

Deciders add dependency information to transactions’

commit messages to tell the other servers the proper

order in which to commit conflicting transactions. If

a transaction’s commit message contains a dependency,

the decider processes the two transactions in the specified

order; otherwise, the decider is free to use the natural ar-

rival order. Regardless of the commit order, the decider

always embeds a dependency upon the first-to-commit

into the second-to-commit transaction ensures that, no

matter the arrival order of commit messages, a server

will delay the dependent transaction until its dependency

commits. Servers are free to commit transactions with-

out unsatisfied dependencies in natural arrival order. For

example, in Figure 3, server s3 decides the order between

T1 and T2 using the information embedded by s4 and s5.

If s4 were to embed T1 T3 and T3 T2 into the com-

mit message for T2, then s3 would know to order T1 first.

If T2 arrives with no such dependency, then s3 knows it

can safely commit T2, because no matter what, T1 may be

ordered after T2. T1 either contains a pre-existing depen-

dency upon T2, or it doesn’t, and s3 will explicitly add

the dependency.

Non-deciders for a conflicting pair of transactions

commit the transactions in the same order as the decider.

If a transaction arrives with a dependency upon another

in a conflicting pair, the non-decider delays the transac-

tion until the dependency commits. This ensures that

the conflicting pair commits in the same order at every

server. Servers s1, s2 in Figure 3 are non-deciders for the

conflicting pair (T1,T2) and use the information from s3

to decide commit order.

Deciders order transactions that belong to multiple

conflicting pairs in a way that preserves the acyclic in-

variant. Take, for instance, server s2 in Figure 3. This

server is the decider for (T2,T4) and a non-decider for

(T1,T2). Servers take care to ensure that decisions made

as a decider remain acyclic regardless of the order de-

cided for other conflicting pairs. The simplest way for

servers to ensure this is to wait for dependency informa-

tion for conflicting pairs for which they are non-deciders

before deciding any other conflicting pairs. In our exam-

ple, s2 would wait for an order for (T1,T2) before decid-

ing (T2,T4).

2.1.5 Garbage Collection

The linear transactions protocol employs garbage collec-

tion to prevent the system from indefinitely maintaining

dependencies on fully committed transactions. When a

transaction completes its backward pass, its dependen-

cies are fixed, and its effects are completely reflected in

the data store. Although there is no harm in allowing

other transactions to include the completed transaction

as a dependency, the dependency is unnecessary because

the system will naturally order every subsequent trans-

action after the completed transaction. The garbage col-

lection mechanism identifies completed transactions and

removes them from the servers’ state.

Servers efficiently communicate the set of transac-

tions to garbage collect by assigning transactions sequen-

tial identifiers. The first server to process a transaction

assigns it the next-lowest value from the server’s local

counter; the combination of the server’s ID and the as-

signed value uniquely identify the transaction. Servers

periodically broadcast an upper bound such that every

transaction assigned a lower value by the server may be

garbage collected. Thus, servers may garbage collect

multiple transactions by transmitting small messages of

constant size.

Upon receipt of a garbage collection broadcast, a

server updates its local state to remove dependencies

which have been garbage collected. It removes from

each individual transaction’s state any dependency upon

garbage-collected transactions. A server removes a

transaction from its hash table only after its dependen-

cies are garbage collected. This ensures that transitively

propagated transactions continue to propagate until they

too are garbage collected.

2.2 Correctness

The linear transactions protocol maintains serializability

by ensuring that the dependency graph between commit-

ted transactions is acyclic. This section provides a proof

sketch for how the protocol maintains this acyclic depen-

dency invariant at all times.

Dependency propagation retains the complete set of

transitive dependencies for every transaction by ensur-

ing that dependencies are always embedded. There are

only six permutations in which the messages for an arbi-

trary conflicting pair (TX ,TY) may pass through any sin-

gle server. Figure 4 enumerates all six permutations. The

5

Time

1:

2:

3:

4:

5:

6:

F(TX) B(TX) F(TY) B(TY)

F(TX) F(TY) B(TX) B(TY)

F(TX) F(TY) B(TY) B(TX)

F(TY) B(TY) F(TX) B(TX)

F(TY) F(TX) B(TY) B(TX)

F(TY) F(TX) B(TX) B(TY)

Figure 4: The six possible patterns in which the messages for

conflicting pair (TX ,TY) may pass through a single server. Pat-

terns 4-6 are isomorphic to patterns 1-3 respectively. F(TX)
indicates the forward pass of TX , while B(TX) indicates the

backward pass of TX . Shaded messages indicate places where

servers embed dependencies.

astute reader will note that only the first three patterns are

unique; the remaining patterns are isomorphic to these

three. Pattern 1 captures the dependency TX TY on the

forward pass because the protocol embeds it directly into

the message. In patterns 2 and 3, the transactions over-

lap in execution at the server, and the decider orders one

transaction before the other; the decider embeds the req-

uisite transitive dependencies into the second-to-commit

transaction. In all six cases, the server embeds one trans-

action and its dependencies into the other.

The linear transactions protocol guarantees serializ-

ability because cycles between transactions cannot ex-

ist. Assume for the sake of contradiction that a cycle did

exist. This would mean that a decider directly contra-

dicted a transitively-defined, pre-existing dependency1.

Because a decider never decides the converse of a known

dependency, it follows that the decider in our hypothet-

ical scenario did not know of the dependency. But this

cannot be, because the transitive closure of a transac-

tion’s dependencies are preserved at each point where

two transactions become ordered. For example, it’s pos-

sible for the transitive dependency T1 T3 T2 to ex-

ist in Figure 3. If server s3 were somehow unaware of

this order and specified the dependency T2 T1, the de-

pendency graph would contain a cycle. Server s3 will

never add such an edge, however, because the depen-

dency T1 T2 stems from a transitive relationship via

T3, and servers s4 and s5 will necessarily transmit the

dependencies when ordering (T2,T3) and (T1,T3). Server

s3 would then have the information necessary to preserve

the acyclic invariant of the dependency graph.

Garbage collection does not affect the correctness

of the protocol because only transactions that complete

their backward pass may be garbage collected. Subse-

1Note that a decider cannot contradict a non-transitively-defined de-

pendency, because the decider itself is the only server that may instill a

direct, non-transitive dependency.

quent transactions may be ordered only after the garbage

collected transaction as shown by Patterns 1 and 4 in Fig-

ure 4. Because every server will naturally order subse-

quent transactions after the garbage-collected state, it is

unnecessary to explicitly maintain a dependency.

2.3 Fault Tolerance and Durability

In a large-scale deployment, failures are inevitable. Lin-

ear transactions accommodate a natural way to overcome

such failures. Specifically, linear transactions permit a

subchain of f + 1 replicas to be inlined into the longer

chain in place of a single data server. This allows the sys-

tem to remain available despite up to f failures within a

subchain. Chain replication maintains a well-ordered se-

ries of updates within each subchain. Operations that tra-

verse the linear transaction chain in the forward direction

pass forward through all inlined chains. Likewise, oper-

ations that traverse the chain in reverse traverse inlined

chains in reverse.

Note that the notion of fault-tolerance provided by lin-

ear transactions is different from the notion of durabil-

ity within traditional databases. While durability ensures

that data may be re-read from disk after a failure, the

system remains unavailable during the failure and recov-

ery period; in contrast, linear transactions’ fault tolerance

mechanism ensures that the system remains available so

long as the number of failures remains below the config-

ured threshold.

2.4 Atomicity, Consistency, Isolation

The protocol guarantees atomicity, consistency, and iso-

lation for all transactions. These properties naturally fol-

low from the one-copy serializability upheld by the pro-

tocol. Each transaction completes in its entirety at a

well-defined point in the partial order, where its effects

are either completely visible to subsequent transactions,

or it aborts without effect. Every server ensures that

the stored objects are well-formed and match their data

types. Overall, linear transactions guarantee that opera-

tions within a transaction execute with mutual exclusion

from each other, as if there were a single giant lock pro-

tecting the database.

2.5 Spurious Coordination

Linear transactions eliminate spurious coordination be-

cause servers commit transactions in natural arrival or-

der unless doing so would violate serializability. Servers

only delay processing a transaction when the transaction

contains a dependency on a non-committed transaction,

and the delay introduced is necessary to preserve seri-

alizability. Transactions which do not contain such de-

pendencies commit in natural arrival order without de-

lay. Because spurious coordination is unnecessary syn-

chronization between transactions, and the protocol only

delays/synchronizes those transactions that it can prove

6

require delay, the protocol exhibits no spurious coordi-

nation.

3 Implementation

We have fully implemented the system described in this

paper. The code base consists of 89,979 lines of code,

approximately 7,500 lines of which are exclusively de-

voted to processing transactions. The Warp distribu-

tion provides bindings for C, C++, Python, Ruby, Java

and Node.JS and supports a rich API that goes well be-

yond the simple get/put interface of typical key-value

stores. A system of virtual servers maps a small number

of servers to a larger number of partitions, permitting the

system to reassign partitions to servers without reparti-

tioning the data. The implementation uses a replicated

state machine as the coordinator to ensure that there are

no single points of failure.

3.1 Rich API

Warp supports an expansive API that enables applica-

tions to build complex applications. The expanded API

includes support for rich data structures, multiple inde-

pendent schemas, and nested transactions.

3.1.1 Data Structures

Warp’s API includes support for complex data structures

that go beyond strings, including integer, float, list, set,

and map types. Warp supports atomic operations, such

as conditional updates that change an object only if it

matches application-specified predicates. These predi-

cates include equality and range comparisons, regular ex-

pressions, and checks for elements within containers. In

addition to the conditional atomic operations, Warp sup-

ports atomic mathematical operations on numeric value

types. For container types, clients may atomically add

and remove objects from the containers, and perform

nested operations on the contained values. Overall, the

Warp API consists of sixty-two different operations that

clients may use within a transaction.

3.1.2 Independent Schemas

Warp enables applications to create multiple, indepen-

dent, schemas each of which specify multiple typed at-

tributes that comprise the object. These schemas re-

semble tables from traditional database systems. Stor-

age servers validate that objects match the schema un-

der which they are stored. A linear transaction may read

and write objects in multiple schemas without restriction.

Clients construct the chain for transactions that touch

multiple schemas by lexicographically ordering servers

first by schema, then by key.

3.1.3 Nested Transactions

Warp supports arbitrarily nested transactions that en-

able clients to build complex applications. Each nested

transaction maintains its own locally-managed transac-

tion context with a pointer to the parent transaction’s

context. Reads recursively query the parent context until

either a cached value is read, or the root context issues

the query to a storage server. Writes are stored in the

transaction context to which they are issued. At commit

time, the client merges a nested transaction into its par-

ent context, by merging the read and write sets. Nested

transactions abort if the values read in the child are mod-

ified in the parent or vice-versa. The client sends a lin-

ear transaction to the storage servers only when the root

transaction commits.

3.2 Virtual Servers

Warp uses a system of virtual servers to map multiple

partitions of the mapping to a single server. Clients con-

struct their linear transaction chains by constructing a

chain through the virtual servers, and then mapping these

virtual servers to their respective servers. A server that

maps to multiple virtual servers in a chain will appear

at multiple places in the chain, where it acts as each of

its virtual servers independently. Within each physical

server, state is partitioned by virtual server, so that each

virtual server functions as if it were independent.

3.3 Coordinator

A replicated state machine called the coordinator par-

titions the key space across all data servers, ensures

balanced key distribution, and facilitates membership

changes as servers leave and join the cluster. Since the

coordinator is not on the data path, it’s implementation is

not critical to the performance of linear transactions.

The coordinator partitions data across servers and en-

sures balanced key distribution by using Copyset Repli-

cation [10] to group servers into replica sets. Each inde-

pendent schema is partitioned across the generated copy-

sets to create an object-to-server mapping. The coordina-

tor over-partitions the key space to enable it to remap par-

titions from over-burdened replica sets to under-loaded

replica sets if necessary.

As servers join and leave a cluster, the coordinator re-

generates copysets to respond to new members. Servers

dynamically compute the previous and next servers in

each linear transaction’s chain using the mapping; when

the mapping changes, servers retransmit transactions

whose chain changed. Because transactions are only

garbage collected after they complete, and servers only

retransmit incomplete transactions, servers are always

able to retransmit the requisite transactions.

The coordinator is implemented on top of the Repli-

cant replicated state machine system. Replicant uses

chain replication [44] to sequence the input to the state

machine and a quorum-based protocol to reconfigure

chains on failure. The details of Replicant are beyond

7

the scope of this paper; the function of the coordinator

could easily be taken on by configuration services such

as Chubby [7], ZooKeeper [22], or OpenReplica [3].

4 Evaluation

We evaluate Warp using both macro and micro bench-

marks against other storage systems using the TPC-C

benchmark. The primary focus of our evaluation is on

examining the performance of Warp transactions relative

to other transaction processing techniques. To that end,

implemented Sinfonia’s mini-transacitons [2] on top of

HyperDex (here-after referred to as 2PCDex). Because

Warp is based upon HyperDex, we ran all benchmarks

against a non-transactional HyperDex to quantify Warp’s

overhead. We ensure a true apples-to-apples comparison

by building all three systems use the same code base,

with minimal changes to the commit protocol; the client-

facing interfaces are identical, and the benchmark code

is identical.

We performed our experiments on our dedicated lab-

size cluster consisting of thirteen servers, each of which

is equipped with two Intel Xeon 2.5 GHz E5420 pro-

cessors, 16 GB of RAM, 500 GB SATA 3.0 Gbit/s hard

disks, and Gigabit Ethernet. The servers are running 64-

bit Debian 7 with the Linux 3.2 kernel. We deployed

HyperDex, 2PCDex, and Warp on each server.

Each storage system was configured with appropriate

settings for a real deployment of this size. This includes

setting the replication factor to be the minimum value

necessary to tolerate one failure of any process or ma-

chine. This means that both the coordinators and the stor-

age servers can each tolerate one failure. HyperDex is

configured to provide linearizability, while 2PCDex and

Warp provide full one-copy serializability.

4.1 TPC-C

The TPC-C benchmark simulates an e-commerce ap-

plication by specifying a mixed transaction workload.

The workload specified by TPC-C is inherently diffi-

cult to process because it includes both read-heavy and

update-heavy transaction profiles and the update-heavy

transactions often include updates to a small number of

keys in the system. For instance, the new-order transac-

tion generates the order’s identifier using a sequentially-

increasing counter associated with one of one-hundred

districts. The payment transaction increments the year-

to-date totals for one of one-hundred districts and one of

ten warehouses. Consequently, the workload necessarily

requires that transactions operate on a small amount of

shared data.

We implemented four of the five TPC-C transaction

profiles and retained as much functionality of the bench-

mark as is feasible to implement on a key-value store.

All operations operate on primary keys, to conform to

0

1

2

3

4

5

6

7

8

HyperDex 2PCDex Warp

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

x
ac

t/
s)

Figure 5: Total transactional throughput of the three systems.

Warp outperforms 2PCDex by a factor of 3.2, and achieves

96% the throughput of HyperDex, which Warp uses as its un-

derlying key-value store.

Profile R W RMW % Mix

New Order 12 3 11 (1) 45

Payment 0 1 3 (2) 45

Order Status 12 0 0 5

Stock Level 201 (1) 0 0 5

Table 1: A summary of the workloads of TPC-C. For each

transaction profile, the chart shows the average number of read-

only (R), write-only (W), and read-modify-write (RMW) oper-

ations. The last column shows the distribution of profiles in

the randomly generated set of transactions. The majority of

the workload consists of new-order and payment transactions

which are both write-heavy transactions that each update one

to two hot keys.

the key-value model; where the TPC-C benchmark spec-

ified a mix of secondary-attribute search and primary-key

retrieval, we always retrieved by primary key. We did not

implement the delivery transaction because it is specified

as a background process and would most likely be han-

dled by a queue mechanism in a real deployment. Where

possible, we use Warp’s atomic addition primitives rather

than reading the old value and writing a new value. Ta-

ble 1 provides an overview of each transaction type, and

describes the average number of objects each transaction

will read (R), write (W), and read-modify-write (RMW).

For each category, we specify in parenthesis the number

of hot objects – that is district or warehouse objects – the

transaction includes.

Figure 5 shows the overall transactional throughput

for HyperDex, 2PCDex, and Warp. We can see that

Warp achieves a throughput that is 3.2 times higher than

2PCDex, and 96% the throughput of HyperDex.

Warp’s throughput is nearly identical to HyperDex’s

throughput because the most new-order and payment

transactions that comprise the bulk of all transactions

8

0

20

40

60

80

100

1 10 100 1000

C
D

F
(%

)

Latency (ms)

HyperDex
2PCDex

Warp

(a) New Order Transactions

0

20

40

60

80

100

1 10 100 1000

C
D

F
(%

)

Latency (ms)

HyperDex
2PCDex

Warp

(b) Payment Transactions

0

20

40

60

80

100

1 10 100 1000

C
D

F
(%

)

Latency (ms)

HyperDex
2PCDex

Warp

(c) Order Status Transactions

0

20

40

60

80

100

1 10 100 1000

C
D

F
(%

)

Latency (ms)

HyperDex
2PCDex
Warp

(d) Stock Level Transactions

Figure 6: CDFs of latency for each transaction type.

have similar latency for HyperDex and Warp. Figures 6a

and 6b show latency CDFs for the new-order and pay-

ment transaction profiles.

Write operations’ latency is mostly independent from

whether or not the writes are performed within a transac-

tion because the number of round-trips required to com-

mit the transaction is the same as the number of round

trips required to perform the writes individually. For ex-

ample, a client that performs three writes that traverse a

chain of length two will incur a cost of six round-trips. A

linear transaction across all three writes will be six nodes

long and incur the same three round-trip cost.

For read operations, Warp incurs a predictable com-

munication cost, shown in Figures 6c and 6d. The cost

of a transactional read is the cost of the optimistic read

to bring the value to the client, plus the cost of a pass

through the transaction chain. Consequently, a transac-

tional read is measurably more expensive as shown in

Figure 6c. Figure 6d shows the stock-level transaction

which executes within a transaction context, but does not

commit the transaction because the TPC-C benchmark

does not require that the transaction be isolated. These

two figures highlight the cost of transactional reads; the

former shows the overall cost, while the latter under-

scores the fact that the cost is only paid at commit time.

2PCDex’s mini-transactions exhibit significantly

higher latency because they are more likely to abort.

Servers in our TPC-C benchmark retry aborted transac-

tions until they succeed before proceeding to subsequent

transactions. 2PCDex aborts transactions that operate on

the same keys, while Warp does not abort any transac-

tions in the benchmark. Figure 7 shows the abort rates

for 2PCDex and Warp. Only 5% of 2PCDex transactions

complete immediately; the rest abort and need to retry.

Warp completes 100% of transactions on the first try.

Although it may seem possible to relax the mini-

transactions protocol to permit transactions to write to

the same key simultaneously, doing so would break seri-

alizability. A modified 2PCDex could not prevent the po-

tential cycle illustrated in Figure 3, as concurrently pre-

pared transactions could commit in different orders on

different servers. Even the atomic operations provided

by HyperDex cannot enable such a relaxed commit pro-

tocol.

9

0

20

40

60

80

100

0 1 2 3 4 5

C
D

F
(%

)

Retries

2PCDex
Warp

Figure 7: A CDF showing how frequently transactions abort

and retry in the TPC-C benchmark. Warp does not retry any

transactions, while 95% of 2PCDex transactions abort and

retry.

4.2 Micro-Benchmarks

In order to gain insight into the behavior of Warp’s linear

transactions, we examine the results from several micro-

benchmarks that expose the behavior of Warp. In all

of these micro-benchmarks, objects have 12 B keys and

64 B values, and are constructed uniformly at random.

Ten million objects are preloaded onto the cluster before

performing each benchmark.

4.2.1 Read/Write Ratio

In order to quantify the effects of the read/write ratio

on a transactions’ throughput, we constructed a micro-

benchmark that varies the read-write ratio for operations

of constant size. This micro-benchmark constructs trans-

actions that involve exactly eight objects, and randomly

read from or write to random objects. Each operation is

randomly chosen to be a read or a write so that the total

percentage of write operations matches the independent

variable. Figure 8 shows the average throughput achiev-

able for given read/write ratios.

4.2.2 Transaction Size

Naturally, the use of chains introduces a trade off: as

transactions grow to contain more keys, the length of the

resulting chains naturally increases as well. Figure 9

quantifies this trade-off by constructing write transac-

tions with different numbers of keys. We employ the

same micro-benchmark from the previous section, and

use a 100% write workload.

To test the performance impact of transaction size, we

modified our previous microbenchmark to vary the num-

ber of keys in a transaction rather than the read/write ra-

tio. In this experiment, the microbenchmark issues trans-

actions with a configurable number of put operations on

random keys. Figure 9 shows the results of this experi-

ment. We can see that, as expected, the number of opera-

0

100

200

300

400

500

25% 50% 75% 100%

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

x
ac

t/
s)

Percent PUT operations

HyperDex
Warp

Figure 8: The ratio of read/write operations does not materi-

ally affect the throughput for transactions. The dominating cost

of a transaction is a round trip though the transaction chain. In

this experiment, the transactions are fixed in size, and thus their

chains’ lengths are fixed. Consequently, we see that throughput

is fixed as well.

tions per second is relatively independent of the trans-

action size. This demonstrates that longer transaction

chains do not introduce additional overhead, and that, for

this workload, the transaction rate is a linear function of

the transaction size.

4.2.3 Scalability

The performance of linear transactions should scale lin-

early with the number of servers in the cluster, as the

number of servers that participate in a linear transac-

tion is dependent only on the transaction size. Adding

more servers to the cluster should therefore yield a pro-

portional increase in performance by spreading the work

across more servers. Figure 10 shows the aggregate

throughput of a two-key transaction from our micro-

benchmark with different cluster sizes. Not surprisingly,

Warp throughput scales linearly with cluster size.

5 Related Work

Transaction management has been an active research

topic since the early days of distributed database sys-

tems. Existing approaches can be broadly classified into

the following categories based upon the mechanisms em-

ployed and resulting guarantees.

Centralized: Early RDBMS systems relied on physi-

cally centralized transaction managers [8]. While cen-

tralization greatly simplifies the implementation of a

transaction manager, it poses a performance and scala-

bility bottleneck and is a single point of failure. Warp,

like many other systems, is based on a distributed archi-

tecture.

Distributed: The traditional approach to distributing

transaction management is to provide a set of special-

ized transaction managers that serve as intermediaries

10

0

50

100

150

200

5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d

x
ac

ts
/s

)

Transaction Size (objects)

HyperDex
Warp

Figure 9: The total throughput of Warp is dependent on the

throughput of the underlying key-value store, and largely inde-

pendent of the transaction size. This graph shows the through-

put of a 100% write workload as the number of keys in a trans-

action increases.

between clients and back-end data servers. These trans-

action managers perform lock or timestamp manage-

ment [6], and employ a protocol, such as two phase-

commit, for coordination. Warp does not employ any

specialized transaction managers; storage servers di-

rectly execute transactions over their data.

A recent proposal [30] suggests physically separating

the transaction processing component from the storage

component so that transaction processing remains agnos-

tic to the structure of the storage. Deuteronomy [27] sep-

arates the transactional component from the data storage

component so that transaction management remains iso-

lated from scaling decisions made at the storage layer.

ElasTraS [14] uses two layers of transaction man-

agement to separately process read-only and read-write

transactions, where each layer and the underlying stor-

age are independently scalable.

Separating transaction management from data storage

does not fundamentally make the transaction manage-

ment more scalable because it does not alter the spu-

rious coordination naturally present in the transaction

manager. Warp’s eliminates spurious coordination and

centralized bottlenecks by employing a completely dis-

tributed protocol.

Consensus-based: Recent work has examined how to

use a general consensus protocol, such as Paxos [25] or

Zab [22], to serialize transactions in a fault-tolerant man-

ner. Although consensus seems unrelated to transaction

management, the classic two-phase commit algorithm is

actually a special f = 0 case of Paxos that cannot tolerate

coordinator failure [20].

Straightforward application of consensus protocols,

however, would maximize spurious coordination by ap-

plying a total order across all transactions. Consequently,

0

50000

100000

150000

200000

250000

300000

350000

400000

2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(o
p
s/

s)

Servers

Warp

Figure 10: Warp is a scalable system. This graph shows the

aggregate throughput of the system as servers are added. The

number of clients and the workload remain fixed for all deploy-

ment sizes. Each point represents the average across three runs.

With each additional server, the overall throughput increases

proportionally, exhibiting linear scaling.

consensus-based systems typically use some combina-

tion of data partitioning [5, 19, 37, 39], Generalized

Paxos [23] or transaction batching [38, 43] to increase

opportunities for parallel execution.

Warp, too, uses consensus, but only to maintain sys-

tem meta-state. The linear transactions protocol, inspired

by chain-replication [44] and value-dependent chain-

ing [17], relies upon consensus for system membership

and coordination, but never for actual transaction pro-

cessing. Because consensus is not on the data path for

any linear transaction, the protocol is able to completely

eliminate any consensus-induced spurious coordination.

Synchronized clocks: Some notable systems in this

space take advantage of synchronized clocks to order

transactions. Adya et. al. [1] support serializable trans-

actions and use loosely synchronized clocks as a per-

formance optimization. Spanner [12] uses tightly syn-

chronized clocks, with bounded error, to achieve high-

throughput and external consistency for transactions

across multiple data centers.. Granola [13] orders inde-

pendent transactions with no locking overhead or abort

mechanism, and orders these transactions using time

synchronization as an optimization.

Warp makes no assumptions about clock synchrony,

and consequently is impervious to the negative side-

effects of incorrectly assuming too-tight of a synchro-

nization. Most systems in this category remain correct

should synchronicity assumptions be violated, but suf-

fer varying degrees of performance degradation. A no-

table exception is Spanner, which preserves serializabil-

ity only when its assumptions are upheld. Consequently,

such systems require more tuning and operations over-

head than Warp.

11

Client-managed transactions: Some systems build on

existing storage by implementing transactions directly

in the client library. Such systems mediate concurrent

transactions by embedding additional attributes into the

stored objects to enable concurrency control. CrSO [18]

uses HBase versions and a centralized status oracle to

check for read-write or write-write conflicts at commit

time. Percolator [32] maintains Google’s search index

by storing both data and locks in BigTable.

The downside to client-managed approaches is that

they require mechanisms to cope with client failure.

CrSO requires a background process to cleanup stale ver-

sions of objects written in failed transactions. Percola-

tor uses a background mechanism to break locks held by

failed processes. Warp incurs no such cost because failed

clients leave behind no state to cleanup.

Geo-Replication: For geo-replicated storage, many sys-

tems avoid synchronous WAN latencies by making guar-

antees weaker than serializability. COPS-GT [28] and

Eiger [29] provide read and write transactions, respec-

tively, that commit locally propagate to remote data cen-

ters in a causally-consistent fashion. Walter [40] imple-

ments parallel snapshot isolation using counting sets to

resolve conflicting versions, similar to commutative data

types [26]. Lynx [45] uses chains for geo-replication,

but requires a priori knowledge of transactions and static

analysis to prevent non-serializable executions.

Warp provides a strictly stronger guarantee of gen-

eral purpose serializable transactions, but lacks optimiza-

tions for geo-replication. We believe that the end-to-end

principle should be applied to cross-data center applica-

tions, because the guarantees required by applications

are more readily met with application-specific mecha-

nism than data-store specific features.

Workload Partitioning: Some systems improve perfor-

mance by constraining applications’ transactions to oper-

ate within single partitions of the data store. G-Store [15]

provides serializable transactions on top of HBase, by

grouping keys’ primary replicas on a single server so that

transactions require no cross-server communication. H-

Store [42] targets OLTP applications and efficiently sup-

ports such constrained tree applications by guaranteeing

that transactions are executed by a single server. Warp

imposes no constraint on transactions’ partitioning, en-

abling maximal flexibility in data placement.

Mini-Transactions: Sinfonia [2] introduces the mini-

transaction primitive which allows an application to

specify sets of checks, reads, and writes and commit the

result using a modified two-phase commit. Although the

content that a client submits in linear transaction resem-

bles that of a mini-transaction, Warp and Sinfonia differ

in their commit behavior. Sinfonia will abort concurrent

transactions that write to the same keys, even in write-

only transactions. Warp allows multiple transactions that

write the same key to simultaneously execute and com-

mit in a serializable order. This difference cannot be

overcome by simply loosening the commit requirements

within Sinfonia, because the resulting mechanism would

have no way to enforce an acyclic dependency graph.

NoSQL Stores: NoSQL systems are defined by their

distributed architecture that offers performance and scal-

ability, often obtained by avoiding strong consistency

or transactional guarantees. Note that the trade-off is

often an engineering decision to mask latency, and is

not fundamental. Amazon’s Dynamo Dynamo [16] and

its derivatives [24, 33, 35] guarantee only eventual con-

sistency in order to increase write availability by writ-

ing data to sloppy quorums. Yahoo!’s PNUTS [11]

guarantees a slightly stronger timeline consistency, but

makes no guarantee of cross-object atomicity or isola-

tion. Google’s BigTable [9] provides linearizable access

to individual rows, but does not make cross-object guar-

antees. BigTable’s consistency is the same as Hyper-

Dex [17], the system Warp builds upon. Warp’s guaran-

tee is strictly stronger as it extends serializability across

multiple objects.

More generally, these NoSQL systems have roots in

Distributed Data Structures [21] and distributed hash ta-

bles [34, 36, 41, 46], which provide efficient access to

individual objects, usually in the form of a key-value

store. Other notable work on key-value stores includes

FAWN-KV [4], a linearizable key-value store built to re-

duce power consumption in storage systems, and RAM-

Cloud [31], which builds a key-value store for low-

latency networks. The goals of these systems are orthog-

onal to those in Warp, and the techniques could be com-

bined to make a transactional key-value store with low

power consumption (maximizing transactions per watt),

or low latency (minimizing transaction completion time).

6 Conclusion

This paper described Warp, a key-value store that pro-

vides one-copy-serializable ACID transactions. The

main insight behind Warp is a protocol called linear

transactions which enables the system to completely dis-

tribute the task of ordering transactions. Consequently,

transactions on separate servers will not require expen-

sive coordination and the number of servers that process

a transaction is independent of the number of servers in

the system. The system achieves high performance on

a variety of standard benchmarks, performing nearly as

well as the non-transactional key-value store that Warp

builds upon.

References

[1] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Mahesh-

wari. Efficient Optimistic Concurrency Control Using Loosely

12

Synchronized Clocks. In Proceedings of the SIGMOD Interna-

tional Conference on Management of Data, pages 23-34, San

Jose, California, May 1995.

[2] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Al-

istair C. Veitch, and Christos T. Karamanolis. Sinfonia: A New

Paradigm For Building Scalable Distributed Systems. In Proceed-

ings of the Symposium on Operating Systems Principles, pages

159-174, Stevenson, Washington, October 2007.

[3] Deniz Altınbüken and Emin Gün Sirer. Commodifying Repli-

cated State Machines With OpenReplica. Cornell University,

Technical Report, 2012.

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar

Phanishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A

Fast Array Of Wimpy Nodes. In Proceedings of the Symposium

on Operating Systems Principles, pages 1-14, Big Sky, Montana,

October 2009.

[5] Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey

Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander

Lloyd, and Vadim Yushprakh. Megastore: Providing Scalable,

Highly Available Storage For Interactive Services. In Proceed-

ings of the Conference on Innovative Data Systems Research,

pages 223-234, Asilomar, California, January 2011.

[6] Philip A. Bernstein and Nathan Goodman. Concurrency Control

In Distributed Database Systems. In ACM Computing Surveys,

13(2):185-221, 1981.

[7] Michael Burrows. The Chubby Lock Service For Loosely-

Coupled Distributed Systems. In Proceedings of the Symposium

on Operating System Design and Implementation, pages 335-350,

Seattle, Washington, November 2006.

[8] Donald D. Chamberlin, A. M. Gilbert, and Robert A. Yost. A

History Of System R And SQL/Data System. In Proceedings of

the International Conference on Very Large Data Bases, pages

456-464, 1981.

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Michael Burrows, Tushar Chandra, Andrew

Fikes, and Robert Gruber. Bigtable: A Distributed Storage Sys-

tem For Structured Data. In Proceedings of the Symposium on

Operating System Design and Implementation, pages 205-218,

Seattle, Washington, November 2006.

[10] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John

Ousterhout, and and Mendel Rosenblum. Copysets: Reducing

The Frequency Of Data Loss In Cloud Storage. In Proceedings

of the USENIX Annual Technical Conference, pages 37–48, San

Jose, California, June 2013.

[11] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,

Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick

Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s

Hosted Data Serving Platform. In Proceedings of the VLDB En-

dowment, 1(2):1277-1288, 2008.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,

Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey

Gubarev, Christopher Heiser, Peter Hochschild, Wilson C. Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,

Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:

Google’s Globally Distributed Database. In ACM Transactions

on Computer Systems, 31(3):8, 2013.

[13] James Cowling and Barbara Liskov. Granola: Low-Overhead

Distributed Transaction Coordination. In Proceedings of the

USENIX Annual Technical Conference, 2012.

[14] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS:

An Elastic, Scalable, And Self-Managing Transactional Database

For The Cloud. In ACM Transactions on Database Systems,

38(1):5, 2013.

[15] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store:

A Scalable Data Store For Transactional Multi Key Access In The

Cloud. In Proceedings of the Symposium on Cloud Computing,

pages 163-174, Indianapolis, Indiana, June 2010.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-

navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-

namo: Amazon’s Highly Available Key-Value Store. In Proceed-

ings of the Symposium on Operating Systems Principles, pages

205-220, Stevenson, Washington, October 2007.

[17] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex:

A Distributed, Searchable Key-Value Store. In Proceedings of the

SIGCOMM Conference, pages 25-36, Helsinki, Finland, August

2012.

[18] Daniel Gómez Ferro, Flavio Junqueira, Benjamin Reed, and

Maysam Yabandeh. Lock-Free Transactional Support For Dis-

tributed Data Stores. Poster Session. Symposium on Operating

Systems Principles, Cascais, Portugal, 2011.

[19] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy,

and Thomas E. Anderson. Scalable Consistency In Scatter. In

Proceedings of the Symposium on Operating Systems Principles,

pages 15-28, Cascais, Portugal, October 2011.

[20] Jim Gray and Leslie Lamport. Consensus On Transaction Com-

mit. In ACM Transactions on Database Systems, 31(1):133-160,

2006.

[21] Steven D. Gribble. A Design Framework And A Scalable Storage

Platform To Simplify Internet Service Construction. PhD thesis,

U.C. Berkeley, 2000.

[22] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin

Reed. ZooKeeper: Wait-Free Coordination For Internet-Scale

Systems. In Proceedings of the USENIX Annual Technical Con-

ference, 2010.

[23] Tim Kraska, Gene Pang, Michael J. Franklin, and Samuel Mad-

den. MDCC: Multi-Data Center Consistency. In The Computing

Research Repository, abs/1203.6049, 2012.

[24] Avinash Lakshman and Prashant Malik. Cassandra: A Decentral-

ized Structured Storage System. In Proceedings of the Interna-

tional Workshop on Large Scale Distributed Systems and Middle-

ware, Big Sky, Montana, October 2009.

[25] Leslie Lamport. The Part-Time Parliament. In ACM Transactions

on Computer Systems, 16(2):133-169, 1998.

[26] Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. CRDTs:

Consistency Without Concurrency Control. In The Computing

Research Repository, abs/0907.0929, 2009.

[27] Justin J. Levandoski, David B. Lomet, Mohamed F. Mokbel, and

Kevin Zhao. Deuteronomy: Transaction Support For Cloud Data.

In Proceedings of the Conference on Innovative Data Systems Re-

search, pages 123-133, Asilomar, California, January 2011.

13

[28] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and

David G. Andersen. Don’t Settle For Eventual: Scalable Causal

Consistency For Wide-Area Storage With COPS. In Proceedings

of the Symposium on Operating Systems Principles, pages 401-

416, Cascais, Portugal, October 2011.

[29] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and

David G. Andersen. Stronger Semantics For Low-Latency Geo-

Replicated Storage. In Proceedings of the Symposium on Net-

worked System Design and Implementation, Lombard, Illinois,

April 2013.

[30] David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J.

Zwilling. Unbundling Transaction Services In The Cloud. In

Proceedings of the Conference on Innovative Data Systems Re-

search, Asilomar, California, January 2009.

[31] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K.

Ousterhout, and Mendel Rosenblum. Fast Crash Recovery In

RAMCloud. In Proceedings of the Symposium on Operating Sys-

tems Principles, pages 29-41, Cascais, Portugal, October 2011.

[32] Daniel Peng and Frank Dabek. Large-Scale Incremental Process-

ing Using Distributed Transactions And Notifications. In Pro-

ceedings of the Symposium on Operating System Design and Im-

plementation, pages 251-264, Vancouver, Canada, October 2010.

[33] Project Voldemort. http://project-voldemort.com/.

[34] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M.

Karp, and Scott Shenker. A Scalable Content-Addressable Net-

work. In Proceedings of the SIGCOMM Conference, pages 161-

172, San Diego, California, August 2001.

[35] Riak. http://basho.com/.

[36] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, De-

centralized Object Location, And Routing For Large-Scale Peer-

To-Peer Systems. In Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms, pages 329-350,

2001.

[37] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld.

Scalaris: Reliable Transactional P2p Key/value Store. In Pro-

ceedings of the SIGPLAN Workshop on ERLANG, pages 41-48,

Victoria, Canada, 2008.

[38] Daniele Sciascia and Fernando Pedone. Geo-Replicated Storage

With Scalable Deferred Update Replication. In Proceedings of

the International Conference on Dependable Systems and Net-

works, pages 1-12, Budapest, Hungary, June 2013.

[39] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scal-

able Deferred Update Replication. In Proceedings of the Interna-

tional Conference on Dependable Systems and Networks, pages

1-12, Boston, Massachusetts, June 2012.

[40] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li.

Transactional Storage For Geo-Replicated Systems. In Proceed-

ings of the Symposium on Operating Systems Principles, pages

385-400, Cascais, Portugal, October 2011.

[41] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,

and Hari Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup

Service For Internet Applications. In Proceedings of the SIG-

COMM Conference, pages 149-160, San Diego, California, Au-

gust 2001.

[42] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros

Harizopoulos, Nabil Hachem, and Pat Helland. The End Of An

Architectural Era (It’s Time For A Complete Rewrite). In Pro-

ceedings of the International Conference on Very Large Data

Bases, pages 1150-1160, 2007.

[43] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun

Ren, Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed

Transactions For Partitioned Database Systems. In Proceedings

of the SIGMOD International Conference on Management of

Data, pages 1-12, Scottsdale, Arizona, May 2012.

[44] Robbert van Renesse and Fred B. Schneider. Chain Replication

For Supporting High Throughput And Availability. In Proceed-

ings of the Symposium on Operating System Design and Imple-

mentation, pages 91-104, San Francisco, California, December

2004.

[45] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos

K. Aguilera, and Jinyang Li. Transaction Chains: Achieving Se-

rializability With Low Latency In Geo-Distributed Storage Sys-

tems. In Proceedings of the Symposium on Operating Systems

Principles, Pennsylvania, November 2013.

[46] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph.

Tapestry: A Fault-Tolerant Wide-Area Application Infras-

tructure. In SIGCOMM Computer Communications Review,

32(1):81, 2002.

14

