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Geo-Replication: A 539-Mile-High View
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Geo-replicated distributed systems have servers in different data centers
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Failure of an entire data center is possible
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Latency between servers is on the order of tens to hundreds of milliseconds
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Inter-Data Center Latency is Costly

In a geo-replicated system, latency is the dominating cost

Memory Reference 100 ns

4 kB SSD Read 150 µs

Round Trip Same Data Center 500 µs

HDD Disk Seek 8 ms

Round Trip East-West 50− 100 ms
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Candidate Designs

Primary/backup (often based on Paxos [Lam98])
Calvin [TDWR+12], Lynx [ZPZS+13], Megastore [BBCF+11],
Rococco [MCZL+14], Scatter [GBKA11], Spanner [CDEF+13]

Alternative consistency
Cassandra [LM09], CRDTs [SPBZ11], Dynamo [DHJK+07], I-confluence
analysis [BFFG+14], Gemini [LPCG+12], Walter [SPAL11]

Spanner’s TrueTime [CDEF+13]
Related: Granola [CL12], Loosely synchronized clocks [AGLM95]

One-shot transactions
Janus [MNLL16], Calvin [TDWR+12], H-Store [KKNP+08],
Rococco [MCZL+14]
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Geo-Replication: Primary Backup
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Writes happen at the primary and propagate to the backup
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Clients close to the primary see low latency
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Clients close to a backup must still communicate with the primary
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Geo-Replication: Primary Backup
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When the primary fails, operations stop until a new primary is selected
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Primary/Backup

! Low-latency in the primary data center

! Simple to implement and reason about

% High-latency outside the primary data center

% Downtime during primary changeover
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Geo-Replication: Eventual Consistency
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Eventually consistent systems write to each data center locally
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Writes eventually propagate between data centers
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Geo-Replication: Eventual Consistency
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Concurrent writes may be lost—as if they never happened
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Eventual Consistency

! Writes are always local and thus fast

% Data can be lost even if the write was successful
! Causal+-consistent systems with CRDTs will not lose writes

% But have no means of guaranteeing a read sees the “latest” value

Causal+ Consistency Guarantees values converge to the same
value using an associative and commutative
merge function

Conflict-Free Replicated Data Types Data structures that provide associative and
commutative merge functions
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Geo-Replication: TrueTime
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Synchronized clocks can enable efficient lockfree reads
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Spanner and True Time

! Fast read-only transactions execute within a single data center
Write path uses traditional 2-phase locking and 2-phase commit

% 2PL incurs cross-data center traffic during the body of the transaction
(sometimes)

Geo-Replicated Transaction ,Commit in 3 Message Delays Background 10 / 45



Geo-Replication: One-shot Transactions
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One-shot transactions replicate the transaction input
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Stored procedures and one-shot transactions

Replicate the transaction, not its side effects

! Replicate the code, starting at any data center

! Succeeds in the absence of contention or failure
% Additional transactions may be required for fully general transactions
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1 Background

2 Consus

3 A Detour to Generalized Paxos

4 Evaluation

5 Conclusion
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Consus Overview

Primary-less design Applications contact the nearest data center
Serializable transactions The gold standard in database guarantees

Efficient Commit Commit in 3 wide-area message delays
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Consus Contributions

Consus’ key contribution is a new commit protocol that:

Executes transactions against a single data center
Replays and decides transactions in 3 wide-area message delays
Builds upon existing proven-correct consensus protocols
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Geo-Replication: Consus
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Commit Protocol Assumptions

Each data center has a full replica of the data and a transaction processing
engine
The transaction processor is capable of executing a transaction up to the
prepare stage of two-phase commit
The transaction processor will abide the results of the commit protocol
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Commit Protocol Basics

Transactions may commit if and only if a quorum of data centers can commit
the transaction
Transaction executes to “prepare” stage in one data center, and then executes
to the “prepare” stage in every other data center
The result of the commit protocol is binding
Data centers that could not execute the transaction will enter degraded mode
and synchronize the requisite data
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Consus’s Core Contribution
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Overview of the Commit Protocol

Initial execution
Commit protocol begins

All data centers
observe outcomes

Achieve consensus
on all outcomes

1

2

3? Phase 2B Broadcast
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Observing vs. Learning Execution Outcomes

Why does Consus have a consensus step?

A data center observing an outcome only knows that outcome
Observation is insufficient to commit; another data center may not have yet
made the same observation
A data center learning an outcome knows that every non-faulty data center
will learn the outcome
The consensus step guarantees all (non-faulty) data centers can learn all
outcomes
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Counting Message Delays
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Commit protocol begins
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4 Evaluation

5 Conclusion
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Generalized Paxos

Traditional Paxos agrees upon a sequence of values
View another way, Paxos agrees upon a totally ordered set

Generalized Paxos agrees upon a partially ordered set
Values learned by Gen. Paxos grow the partially ordered set incrementally,
e.g. if a server learns v at t1 and w at t2, and t1 < t2, then v v w

Crucial property: Gen. Paxos has a fast path where acceptors can accept
proposals without communicating with other acceptors
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Generalized Paxos Fast Path

Leader Follower Follower

P

P

2A

2B

Classic/Slow
Path

P

P

2B 2B

2B
2B

Fast
Path

Geo-Replicated Transaction ,Commit in 3 Message Delays A Detour to Generalized Paxos 25 / 45



Generalized Paxos Example
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Initially all acceptors have an empty partially ordered set
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Acceptor 1 can accept “A” without consulting others

Geo-Replicated Transaction ,Commit in 3 Message Delays A Detour to Generalized Paxos 26 / 45



Generalized Paxos Example
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Acceptor 2 can accept “B” without consulting others
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Generalized Paxos Example
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Generalized Paxos Example
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Only after a quorum accept “A” and “B” will the learner learn both
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When acceptors accept conflicting posets, a Classic round of Paxos is necessary
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Using Generalized Paxos in Consus

Run one instance of Generalized Paxos per transaction
Let the set of learnable commands be outcomes for the different data centers
Outcomes are incomparable in acceptors’ posets (effectively making them
unordered sets)
After accepting an outcome, broadcasting the newly accepted state
Each data center’s learner will eventually learn the same poset
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Overview of the Commit Protocol

Initial execution
Commit protocol begins

All data centers
observe outcomes

Achieve consensus
on all outcomes
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Cauterizing Loose Ends

Garbage Collection Generalized Paxos leaves garbage collection as an exercise for
the reader

Gen. Paxos instance lives only as long as a transaction
Garbage collect entire instance, rather than part of poset

Deadlock Create a new command for a data center to request to change
their outcome from “commit” to a “deadlock-induced abort”

Totally order this with respect to all other commands
May invoke slow path to abort a transaction

Performance Learning a poset requires checking equivalence relation and
computing GLB for every possible quorum

Pre-compute transitive closure of c-structs
Use representation that is bit-wise operator friendly
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Current Code Base

Approximately 32 k lines of code written for Consus and another 41 k
imported from HyperDex dependencies
Released under open source license
Code is not production ready, but writes to disk and has the failure paths
implemented
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Evaluation Setup

Experiments run on Amazon AWS using m3.xlarge instances with SSD
storage
Five servers deployed in the same availability zone
Artificial RTT of 200 ms configured between servers to simulate wide-are
setting
One server for running TPC-C against the deployment
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TPC-C Stock Level Latency
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Summary

Consus provides geo-replicated transactions
Transactions execute within three wide-area message delays (common case)
Careful constructions around Generalized Paxos enable it to stay on the fast
path, while retaining well-defined safety semantics for the special case paths.
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