
The Design and Implementation of the
Warp Transactional Filesystem

Robert Escriva, Emin Gün Sirer

Cornell University

Symposium on Networked Systems Design and Implementation
March 18, 2016

The Design and Implementation of WTF 1 / 28

Common Trends in Distributed Filesystems

Compromises or limitations are often introduced in search of higher performance:

% Weak guarantees:
Eventual consistency
“Consistent, but undefined”

% Narrow interfaces:
Writes must be sequential
Concurrent writes prohibited

% Unscalable design:
Full-bisection bandwidth
Large “master” server

The Design and Implementation of WTF Motivation 2 / 28

Warp Transactional Filesystem (WTF)

WTF represents a new design point in the space of distributed filesystems

WTF employs the file slicing abstraction to provide applications
with strong guarantees and zero-copy filesystem interfaces

! Strong guarantees: transactionally access and modify the filesystem

! Expanded interface: traditional POSIX APIs and new zero-copy APIs

! Scalable Design: avoids centralized master or expensive network bottlenecks

The Design and Implementation of WTF Design 3 / 28

Zero-Copy File Slicing APIs

Traditional APIs transfer bytes back and forth through the filesystem interface
File-slicing APIs deal in references to data already in the filesystem

yank Obtain references to data in the filesystem
Analogous to read

paste Write referenced data back to the filesystem
Analogous to write

append Append referenced data to the end of a file
Optimized for concurrency

concat Merge one or more files to create a new file
Does not read or write data from the input files

The Design and Implementation of WTF Design 4 / 28

The File Slicing Abstraction
The central abstraction is a slice: an immutable, byte-addressable, arbitrarily
sized sequence of bytes
A file is represented by a sequence of slices that, when overlaid, comprise the
file’s contents

Overlaid Slices

File Contents

The Design and Implementation of WTF Design 5 / 28

WTF Architecture

End User
Application

Client
Library

Metadata
Storage

Storage Servers

The Design and Implementation of WTF Design 6 / 28

WTF Architecture

End User
Application

Client
Library

Metadata
Storage

Storage Servers

The metadata storage provides transactional operations over the metadata

The Design and Implementation of WTF Design 6 / 28

WTF Architecture

End User
Application

Client
Library

Metadata
Storage

Storage Servers

The client library extends these transactional guarantees to the end user

The Design and Implementation of WTF Design 6 / 28

Slices and Slice Pointers

s0

s1

c1

c2

c3

c4

A B

Slice Pointer A:
server: s0
chunk: c1
start: 1,073,816,936
end: 8,589,788,476

Slice Pointer B:
server: s1
chunk: c4
start: 10,737,389,932
end: 13,958,442,063

Slices reside on storage servers, while pointers to slices reside in HyperDex
The Design and Implementation of WTF Design 7 / 28

Slices and Slice Pointers

s0

s1

c1

c2

c3

c4

A BSlice Pointer A:
server: s0
chunk: c1
start: 1,073,816,936
end: 8,589,788,476

Slice Pointer B:
server: s1
chunk: c4
start: 10,737,389,932
end: 13,958,442,063

Slice pointers directly indicate a slice’s location in the system
The Design and Implementation of WTF Design 7 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A BA BC

A B CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

An empty file has no metadata and occupies no space on storage servers

The Design and Implementation of WTF Design 8 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A

BA BC

A

B CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB

B @ 2 MB C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

A 2 MB write writes to the storage servers and metadata

The Design and Implementation of WTF Design 8 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB

C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Another 2 MB write

The Design and Implementation of WTF Design 8 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB

C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

WTF supports writes at arbitrary offsets within files

The Design and Implementation of WTF Design 8 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B C

A B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

A 2 MB write that overwrites part of both prior writes

The Design and Implementation of WTF Design 8 / 28

Metadata Compaction

Compaction reduces the size of the metadata list by removing references to
unused portions of slices
Because slice pointers directly reference the location of files, they can be
modified in the metadata list using local computation
Consequently, compaction occurs entirely at the metadata level

The Design and Implementation of WTF Design 9 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B C

A B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

The Design and Implementation of WTF Design 10 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Compaction eliminates references to overwritten or erased data

The Design and Implementation of WTF Design 10 / 28

Garbage Collection

Garbage collection cleans up the slices no longer referenced by any slice
pointer
WTF periodically scans the filesystem and collects all slice pointers
Storage servers use the scan, along with their local data, to determine which
data is garbage

The Design and Implementation of WTF Design 11 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

The Design and Implementation of WTF Design 12 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Garbage is freed from the underlying filesystem

The Design and Implementation of WTF Design 12 / 28

Locality-Aware Slice Placement

Locality-aware slice placement prevents fragmentation when writing sequentially

Slices placed contiguously on storage servers improve locality when reading
files
Consistent hashing across storage servers in the system on a per-file basis
increases probability that sequentially written slices are adjacent
The metadata for adjacent slices may be represented in a more compact form

The Design and Implementation of WTF Design 13 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB

C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Locality-aware slice placement reduces fragmentation

The Design and Implementation of WTF Design 14 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A B

A BC

A B

CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB

C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Adjacent slices may be represented by a new, merged slice pointer

The Design and Implementation of WTF Design 14 / 28

s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB

A BA BC

A B CA B

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

⇑
cursor

A @ 0 MB B @ 2 MB C @ 1 MB

D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

The new slice pointer represents the contiguous range on the storage servers

The Design and Implementation of WTF Design 14 / 28

WTF Applications

MapReduce Sort: concat enables an efficient bucket-based merge sort
Work Queue: append units of work are appended to the file; all contention

happens in the metadata layer
Video editor: yank and paste enable the editor to reorder scenes without

rewriting the movie
Fuse Bindings: transactional behavior exposed to the user for easy data

exploration

The Design and Implementation of WTF Design 15 / 28

Application: MapReduce Sort

...
...

...
...

WTF concat

Input File Buckets Sorted Buckets Output File

The Design and Implementation of WTF Design 16 / 28

Application: MapReduce Sort

...
...

...
...

WTF concat

Input File Buckets Sorted Buckets Output File

The Design and Implementation of WTF Design 16 / 28

Application: MapReduce Sort

0

20

40

60

80

HDFS WTF

E
xe

cu
tio

n
Ti

m
e

(m
in

ut
es

)

The Design and Implementation of WTF Design 17 / 28

Application: MapReduce Sort

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Bucket Sort Merge

E
xe

cu
tio

n
Ti

m
e

(s
)

HDFS
WTF

The Design and Implementation of WTF Design 18 / 28

Application: Work Queue

0

50

100

150

200

HDFS WTF

T
hr

ou
gh

pu
t(

op
s/

s)

The Design and Implementation of WTF Design 19 / 28

Application: Video Editor

Chronological Order

Final Cut

The Design and Implementation of WTF Design 20 / 28

Application: Video Editor

1

10

100

1000

10000

100000

HDFS WTF

E
xe

cu
tio

n
Ti

m
e

(s
)

WTF can rewrite 377 GB of raw movie footage in 16 s using file
slicing—effectively 23 GB/s, as opposed to rewriting the footage using traditional
APIs, which requires approximately three hours

The Design and Implementation of WTF Design 21 / 28

Application: Interactive Transactions

wtf begin-transaction
ls
./data.0000 ./data.0001
./data.0002 ./data.0003
....
rm -rf *
ls
wtf abort-transaction
ls
./data.0000 ./data.0001
./data.0002 ./data.0003
....

The Design and Implementation of WTF Design 22 / 28

Microbenchmark: Baseline Performance

0

25

50

75

100

125

Write Read Seq.Read Rand.

T
hr

ou
gh

pu
t(

M
B

/s
)

POSIX
HDFS
WTF

The Design and Implementation of WTF Design 23 / 28

Microbenchmark: Write Sequential

0

100

200

300

400

500

64B 2KB 64KB 2MB 64MB

T
hr

ou
gh

pu
t(

M
B

/s
)

Block Size (bytes)

HDFS
WTF

The Design and Implementation of WTF Design 24 / 28

Microbenchmark: Write Sequential

0

2

4

6

8

10

64B 128B 256B 512B 1KB

T
hr

ou
gh

pu
t(

M
B

/s
)

Block Size (bytes)

HDFS

The Design and Implementation of WTF Design 25 / 28

Microbenchmark: Write Sequential

0

2

4

6

8

10

64B 128B 256B 512B 1KB

T
hr

ou
gh

pu
t(

M
B

/s
)

Block Size (bytes)

HDFS
10ms metadata

The Design and Implementation of WTF Design 25 / 28

Microbenchmark: Write Sequential

0

2

4

6

8

10

64B 128B 256B 512B 1KB

T
hr

ou
gh

pu
t(

M
B

/s
)

Block Size (bytes)

HDFS
WTF
10ms metadata

The Design and Implementation of WTF Design 25 / 28

Microbenchmark: Write Sequential

0

2

4

6

8

10

64B 128B 256B 512B 1KB

T
hr

ou
gh

pu
t(

M
B

/s
)

Block Size (bytes)

HDFS
WTF
1ms metadata
10ms metadata

The Design and Implementation of WTF Design 25 / 28

Microbenchmark: Fault Tolerance

0

50

100

150

200

250

300

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t(

M
B

/s
)

Time (s)

WTF

The Design and Implementation of WTF Design 26 / 28

Related Work

Distributed Filesystems
Farsite, AFS, xFS, Swift, Petal, Frangipani, NASD, Panasas

Data Center Filesystems
CalvinFS, GFS, HDFS, Salus, Flat Datacenter Storage, Blizzard, f4, Pelican

Transactional Filesystems
QuickSilver, Transactional LFS, Valor, PerDis FS, KBDBFS, Inversion, Amino

The Design and Implementation of WTF Design 27 / 28

Conclusion

WTF is a new design point in distributed filesystems that leverages the file slicing
abstraction to provide:

Transactional guarantees
Expanded APIs
Improved performance

The Design and Implementation of WTF Conclusion 28 / 28

	Motivation
	Design
	Conclusion

