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Common Trends in Distributed Filesystems

Compromises or limitations are often introduced in search of higher performance:

% Weak guarantees:
Eventual consistency
“Consistent, but undefined”

% Narrow interfaces:
Writes must be sequential
Concurrent writes prohibited

% Unscalable design:
Full-bisection bandwidth
Large “master” server
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Warp Transactional Filesystem (WTF)

WTF represents a new design point in the space of distributed filesystems

WTF employs the file slicing abstraction to provide applications
with strong guarantees and zero-copy filesystem interfaces

! Strong guarantees: transactionally access and modify the filesystem

! Expanded interface: traditional POSIX APIs and new zero-copy APIs

! Scalable Design: avoids centralized master or expensive network bottlenecks
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Zero-Copy File Slicing APIs

Traditional APIs transfer bytes back and forth through the filesystem interface
File-slicing APIs deal in references to data already in the filesystem

yank Obtain references to data in the filesystem
Analogous to read

paste Write referenced data back to the filesystem
Analogous to write

append Append referenced data to the end of a file
Optimized for concurrency

concat Merge one or more files to create a new file
Does not read or write data from the input files
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The File Slicing Abstraction
The central abstraction is a slice: an immutable, byte-addressable, arbitrarily
sized sequence of bytes
A file is represented by a sequence of slices that, when overlaid, comprise the
file’s contents

Overlaid Slices

File Contents

The Design and Implementation of WTF Design 5 / 28



WTF Architecture
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WTF Architecture

End User
Application

Client
Library

Metadata
Storage

Storage Servers

The metadata storage provides transactional operations over the metadata
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WTF Architecture
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The client library extends these transactional guarantees to the end user
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Slices and Slice Pointers

s0

s1

c1

c2

c3

c4

A B

Slice Pointer A:
server: s0
chunk: c1
start: 1,073,816,936
end: 8,589,788,476

Slice Pointer B:
server: s1
chunk: c4
start: 10,737,389,932
end: 13,958,442,063

Slices reside on storage servers, while pointers to slices reside in HyperDex
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Slices and Slice Pointers
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A BSlice Pointer A:
server: s0
chunk: c1
start: 1,073,816,936
end: 8,589,788,476

Slice Pointer B:
server: s1
chunk: c4
start: 10,737,389,932
end: 13,958,442,063

Slice pointers directly indicate a slice’s location in the system
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s0

0 MB 1 MB 2 MB 3 MB 4 MB

0 MB 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB
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⇑
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A @ 0 MB B @ 2 MB C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

An empty file has no metadata and occupies no space on storage servers
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A @ 0 MB

B @ 2 MB C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

A 2 MB write writes to the storage servers and metadata
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Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Another 2 MB write
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C @ 1 MBD @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

WTF supports writes at arbitrary offsets within files
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D @ 0 MB

Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

A 2 MB write that overwrites part of both prior writes
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Metadata Compaction

Compaction reduces the size of the metadata list by removing references to
unused portions of slices
Because slice pointers directly reference the location of files, they can be
modified in the metadata list using local computation
Consequently, compaction occurs entirely at the metadata level
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Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Compaction eliminates references to overwritten or erased data
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Garbage Collection

Garbage collection cleans up the slices no longer referenced by any slice
pointer
WTF periodically scans the filesystem and collects all slice pointers
Storage servers use the scan, along with their local data, to determine which
data is garbage
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Slice Pointer A:
server: s0
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start: 0MB
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Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Garbage is freed from the underlying filesystem
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Locality-Aware Slice Placement

Locality-aware slice placement prevents fragmentation when writing sequentially

Slices placed contiguously on storage servers improve locality when reading
files
Consistent hashing across storage servers in the system on a per-file basis
increases probability that sequentially written slices are adjacent
The metadata for adjacent slices may be represented in a more compact form
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Slice Pointer B:
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chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Locality-aware slice placement reduces fragmentation
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server: s0
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Slice Pointer B:
server: s0
chunk: c
start: 2MB
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Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

Adjacent slices may be represented by a new, merged slice pointer
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Slice Pointer A:
server: s0
chunk: c
start: 0MB
end: 2MB

Slice Pointer B:
server: s0
chunk: c
start: 2MB
end: 4MB

Slice Pointer D:
server: s0
chunk: c
start: 0MB
end: 4MB

The new slice pointer represents the contiguous range on the storage servers
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WTF Applications

MapReduce Sort: concat enables an efficient bucket-based merge sort
Work Queue: append units of work are appended to the file; all contention

happens in the metadata layer
Video editor: yank and paste enable the editor to reorder scenes without

rewriting the movie
Fuse Bindings: transactional behavior exposed to the user for easy data

exploration
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Application: MapReduce Sort

...
...
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WTF concat

Input File Buckets Sorted Buckets Output File
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Application: MapReduce Sort
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Application: MapReduce Sort
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Application: Work Queue
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Application: Video Editor

Chronological Order

Final Cut
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Application: Video Editor
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WTF can rewrite 377 GB of raw movie footage in 16 s using file
slicing—effectively 23 GB/s, as opposed to rewriting the footage using traditional
APIs, which requires approximately three hours
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Application: Interactive Transactions

# wtf begin-transaction
# ls
./data.0000 ./data.0001
./data.0002 ./data.0003
....
# rm -rf *
# ls
# wtf abort-transaction
# ls
./data.0000 ./data.0001
./data.0002 ./data.0003
....
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Microbenchmark: Baseline Performance
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Microbenchmark: Write Sequential
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Microbenchmark: Write Sequential
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Microbenchmark: Fault Tolerance
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Related Work

Distributed Filesystems
Farsite, AFS, xFS, Swift, Petal, Frangipani, NASD, Panasas

Data Center Filesystems
CalvinFS, GFS, HDFS, Salus, Flat Datacenter Storage, Blizzard, f4, Pelican

Transactional Filesystems
QuickSilver, Transactional LFS, Valor, PerDis FS, KBDBFS, Inversion, Amino
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Conclusion

WTF is a new design point in distributed filesystems that leverages the file slicing
abstraction to provide:

Transactional guarantees
Expanded APIs
Improved performance
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